22 research outputs found

    Effect of electromagnetic fields on the creation of scalar particles in a flat Robertson-Walker space-time

    Full text link
    The influence of electromagnetic fields on the creation of scalar particles from vacuum in a flat Robertson-Walker space-time is studied. The Klein Gordon equation with varying electric field and constant magnetic one is solved. The Bogoliubov transformation method is applied to calculate the pair creation probability and the number density of created particles. It is shown that the electric field amplifies the creation of scalar particles while the magnetic field minimizes it.Comment: Important modifications, 20 pages, To appear in Eurpean Physical Journal C. arXiv admin note: text overlap with arXiv:1108.033

    Gravitational Collapse in Generalized Vaidya Space-Time for Lovelock Gravity Theory

    Full text link
    In this work, we have assumed the generalized Vaidya solution in Lovelock theory of gravity in (n+2)(n+2)-dimensions. It has been shown that Gauss-Bonnet gravity, dimensionally continued Lovelock gravity and pure Lovelock gravity can be constructed by suitable choice of parameters. We have investigated the occurrence of singularities formed by the gravitational collapse in above three particular forms of Lovelock theory of gravity. The dependence of the nature of singularity on the existence of radial null geodesic for Vaidya space-time has been specially considered. In all the three models, we have shown that the nature of singularities (naked singularity or black hole) completely depend on the parameters. Choices of various parameters are shown in tabular form. In Gauss-Bonnet gravity theory, it can be concluded that the possibility of naked singularity increases with increase in dimensions. In dimensionally continued Lovelock gravity, the naked singularity is possible for odd dimensions for several values of parameters. In pure Lovelock gravity, only black hole forms due to the gravitational collapse for any values of parameters. It has been shown that when accretion is taking place on a collapsing object, it is highly unlikely to get a black hole. Finally on considering the phantom era in the expanding universe it is observed that there is no possibility of formation of a black hole if we are in the Gauss-Bonnet gravity considering the accreting procedure upon a collapsing object.Comment: 11 page

    Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run

    Get PDF
    Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo's third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow both the frequency and the time derivative of the frequency of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search, we look in O3 data for long-duration (hours-months) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain upper limits do not surpass indirect energy constraints for any of these targets. © 2022. The Author(s). Published by the American Astronomical Society
    corecore