44 research outputs found

    Theory of the tunneling resonances of the bilayer electron systems in strong magnetic field

    Full text link
    We develop a theory for the anomalous interlayer conductance peaks observed in bilayer electron systems at nu=1. Our model shows the that the size of the peak at zero bias decreases rapidly with increasing in-plane magnetic field, but its location is unchanged. The I-V characteristic is linear at small voltages, in agreement with experimental observations. In addition we make quantitative predictions for how the inter-layer conductance peaks vary in position with in-plane magnetic field at high voltages. Finally, we predict novel bi-stable behavior at intermediate voltages.Comment: 5 pages, 2 figure

    Dynamics of quantum Hall stripes in double-quantum-well systems

    Full text link
    The collective modes of stripes in double layer quantum Hall systems are computed using the time-dependent Hartree-Fock approximation. It is found that, when the system possesses spontaneous interlayer coherence, there are two gapless modes, one a phonon associated with broken translational invariance, the other a pseudospin-wave associated with a broken U(1) symmetry. For large layer separations the modes disperse weakly for wavevectors perpendicular to the stripe orientation, indicating the system becomes akin to an array of weakly coupled one-dimensional XY systems. At higher wavevectors the collective modes develop a roton minimum associated with a transition out of the coherent state with further increasing layer separation. A spin wave model of the system is developed, and it is shown that the collective modes may be described as those of a system with helimagnetic ordering.Comment: 16 pages including 7 postscript figure

    Effect of Subband Landau Level Coupling to the Linearly Dispersing Collective Mode in a Quantum Hall Ferromagnet

    Full text link
    In a recent experiment (Phys. Rev. Lett. {\bf 87}, 036903 (2001)), Spielman et al observed a linearly dispersing collective mode in quantum Hall ferromagnet. While it qualitatively agrees with the Goldstone mode dispersion at small wave vector, the experimental mode velocity is slower than that calculated by previous theories by a factor about 0.55. A better agreement with the experimental data may possibly be achieved by taking the subband Landau level coupling into account due to the finiteness of the layer thickness. A novel coupling of quantum fluctuation to the tunneling is briefly discussed.Comment: 4 pages; published versio

    Global phase diagram of bilayer quantum Hall ferromagnets

    Full text link
    We present a microscopic study of the interlayer spacing d versus in-plane magnetic field BB_\parallel phase diagram for bilayer quantum Hall (QH) pseudo-ferromagnets. In addition to the interlayer charge balanced commensurate and incommensurate states analyzed previously, we address the corresponding interlayer charge unbalanced "canted" QH states. We predict a large anomaly in the bilayer capacitance at the canting transition and the formation of dipole stripe domains with periods exceeding 1 micron in the canted state.Comment: 4 RevTeX pgs, 2 eps figures, submitted to PR

    A dc voltage step-up transformer based on a bi-layer \nu=1 quantum Hall system

    Full text link
    A bilayer electron system in a strong magnetic field at low temperatures, with total Landau level filling factor nu =1, can enter a strongly coupled phase, known as the (111) phase or the quantum Hall pseudospin-ferromagnet. In this phase there is a large quantized Hall drag resistivity between the layers. We consider here structures where regions of (111) phase are separated by regions in which one of the layers is depleted by means of a gate, and various of the regions are connected together by wired contacts. We note that with suitable designs, one can create a DC step-up transformer where the output voltage is larger than the input, and we show how to analyze the current flows and voltages in such devices

    Bias-voltage induced phase-transition in bilayer quantum Hall ferromagnets

    Full text link
    We consider bilayer quantum Hall systems at total filling factor ν=1\nu=1 in presence of a bias voltage Δv\Delta_v which leads to different filling factors in each layer. We use auxiliary field functional integral approach to study mean-field solutions and collective excitations around them. We find that at large layer separation, the collective excitations soften at a finite wave vector leading to the collapse of quasiparticle gap. Our calculations predict that as the bias voltage is increased, bilayer systems undergo a phase transition from a compressible state to a ν=1\nu=1 phase-coherent state {\it with charge imbalance}. We present simple analytical expressions for bias-dependent renormalized charge imbalance and pseudospin stiffness which are sensitive to the softening of collective modes.Comment: 12 pages, 5 figures. Minor changes, one reference adde

    Quantum-Hall Quantum-Bits

    Get PDF
    Bilayer quantum Hall systems can form collective states in which electrons exhibit spontaneous interlayer phase coherence. We discuss the possibility of using bilayer quantum dot many-electron states with this property to create two-level systems that have potential advantages as quantum bits.Comment: 4 pages, 4 figures included, version to appear in Phys. Rev. B (Rapid Communications

    Optical Properties of Collective Excitations for Finite Chains of Trapped Atoms

    Full text link
    Resonant dipole-dipole interaction modifies the energy and decay rate of electronic excitations for finite one dimensional chains of ultracold atoms in an optical lattice. We show that collective excited states of the atomic chain can be divided into dark and bright modes, where a superradiant mode with an enhanced collective effective dipole dominates the optical scattering. Studying the generic case of two chain segments of different length and position exhibits an interaction blockade and spatially structured light emission. Ultimately, an extended system of several interfering segments models a long chain with randomly distributed defects of vacant sites. The corresponding emission pattern provides a sensitive tool to study structural and dynamical properties of the system.Comment: 8 pages, 12 figure

    Solitons in polarized double layer quantum Hall systems

    Full text link
    A new manifestation of interlayer coherence in strongly polarized double layer quantum Hall systems with total filling factor ν=1\nu=1 in the presence of a small or zero tunneling is theoretically predicted. It is shown that moving (for small tunneling) and spatially localized (for zero tunneling) stable pseudospin solitons develop which could be interpreted as mobile or static charge-density excitations. The possibility of their experimental observation is also discussed.Comment: Phys. Rev. B (accepted

    Electromagnetic characteristics of bilayer quantum Hall systems in the presence of interlayer coherence and tunneling

    Full text link
    The electromagnetic characteristics of bilayer quantum Hall systems in the presence of interlayer coherence and tunneling are studied by means of a pseudospin-texture effective theory and an algebraic framework of the single-mode approximation, with emphasis on clarifying the nature of the low-lying neutral collective mode responsible for interlayer tunneling phenomena. A long-wavelength effective theory, consisting of the collective mode as well as the cyclotron modes, is constructed. It is seen explicitly from the electromagnetic response that gauge invariance is kept exact, this implying, in particular, the absence of the Meissner effect in bilayer systems. Special emphasis is placed on exploring the advantage of looking into quantum Hall systems through their response; in particular, subtleties inherent to the standard Chern-Simons theories are critically examined.Comment: 9 pages, Revtex, to appear in Phys. Rev.
    corecore