27 research outputs found
Effects of temperature and doxorubicin exposure on keratinocyte damage in vitro
Cancer chemotherapy treatment often leads to hair loss, which may be prevented by cooling the scalp during drug administration. The current hypothesis for the hair preservative effect of scalp cooling is that cooling of the scalp skin reduces blood flow (perfusion) and chemical reaction rates. Reduced perfusion leads to less drugs available for uptake, whereas the reduced temperature decreases uptake of and damage by chemotherapy. Altogether, less damage is exerted to the hair cells, and the hair is preserved. However, the two mechanisms in the hypothesis have not been quantified yet. To quantify the effect of reduced drug damage caused by falling temperatures, we investigated the effect of local drug concentration and local tissue temperature on hair cell damage using in vitro experiments on keratinocytes. Cells were exposed for 4 h to a wide range of doxorubicin concentrations. During exposure, cells were kept at different temperatures. Cell viability was determined after 3 d using a viability test. Control samples were used to establish a concentration–viability curve. Results show that cell survival is significantly higher in cooled cells (T < 22° C) than in non-cooled cells (T = 37° C), but no significant differences are visible between T = 10° C and T = 22° C. Based on this result and previous work, we can conclude that there is an optimal temperature in scalp cooling. Further cooling will only result in unnecessary discomfort for the patient and should therefore be avoided
Senescent cells: a novel therapeutic target for aging and age-related diseases
Item does not contain fulltextAging is the main risk factor for most chronic diseases, disabilities, and declining health. It has been proposed that senescent cells--damaged cells that have lost the ability to divide--drive the deterioration that underlies aging and age-related diseases. However, definitive evidence for this relationship has been lacking. The use of a progeroid mouse model (which expresses low amounts of the mitotic checkpoint protein BubR1) has been instrumental in demonstrating that p16(Ink4a)-positive senescent cells drive age-related pathologies and that selective elimination of these cells can prevent or delay age-related deterioration. These studies identify senescent cells as potential therapeutic targets in the treatment of aging and age-related diseases. Here, we describe how senescent cells develop, the experimental evidence that causally implicates senescent cells in age-related dysfunction, the chronic diseases and disorders that are characterized by the accumulation of senescent cells at sites of pathology, and the therapeutic approaches that could specifically target senescent cells
TP53 codon 72 polymorphism affects accumulation of mtDNA damage in human cells.
Human TP53 gene is characterised by a polymorphism at codon 72 leading to an Arginine-to-Proline (R/P) substitution. The two resulting p53 isoforms have a different subcellular localisation after stress (more nuclear or more mitochondrial for the P or R isoform, respectively). p53P72 variant is more efficient than p53R72 in inducing the expression of genes involved in nuclear DNA repair. Since p53 is involved also in mitochondrial DNA (mtDNA) maintenance, we wondered whether these p53 isoforms are associated with different accumulation of mtDNA damage. We observed that cells bearing p53R72 accumulate lower amount of mtDNA damage upon rotenone stress with respect to cells bearing p53P72, and that p53R72 co-localises with polymerase gamma more than p53P72. We also analysed the in vivo accumulation of heteroplasmy in a 300 bp fragment of mtDNA D-loop of 425 aged subjects. We observed that subjects with heteroplasmy higher than 5% are significantly less than expected in the p53R72/R72 group. On the whole, these data suggest that the polymorphism of TP53 at codon 72 affects the accumulation of mtDNA mutations, likely through the different ability of the two p53 isoforms to bind to polymerase gamma, and may contribute to in vivo accumulation of mtDNA mutations
Molecular remodeling of potassium channels in fibroblasts from centenarians: a marker of longevity?
Aging is a complex process resulting from, among other, dynamic non-linear interactions between genetics and environment. Centenarians are the best example of successful aging in humans, as they escaped from, or largely postponed, major age-related diseases. Ionic fluxes changes play a key role in several patho-physiological cellular processes, but their relation to human aging is largely unexplored. In the present study we have compared patch-clamp potassium (K(+)) current recordings from dermal fibroblasts (DF) obtained from young, elderly and centenarian donors. We found that in DF from elderly donors, but not from centenarians, K(+) current amplitude is significantly smaller with respect to DF from young donors. Moreover, cell membrane capacitance of DF from elderly donors is smaller with respect to young donors and centenarians. We also observed that the voltage-gated Shaker Kv1.1 channel is expressed in higher percentage of elderly's and centenarian's DF than young's, whereas the large-conductance calcium-activated K(+) (BK(Ca)) channel β1 subunit is expressed in lower percentage of centenarian's DF than in elderly's and young's. The maintenance of "young" K(+) currents and the peculiar age-related remodeling of K(+) channel subtypes in centenarian's DF is likely associated with successful aging and might provide a predictive marker of longevity
Quantitative Real-Time Reverse Transcription-PCR Assay for the Expression of Tob mRNA in Human Colorectal Cancer
OBJECTIVE Tob is a member of Tob/BTG antiproliferative family. To date, Tob expression in human carcinoma using clinical specimens has not been studied in depth except for lung carcinoma and thyroid carcinoma. This study is the first to investigate the expression levels of Tob gene in human colorectal cancer tissues, and their corresponding para-cancerous tissues. The correlation of expression of the Tob gene with clinicopathological characteristics of colorectal cancer was also analyzed. METHODS Quantitative real time RT-PCR was used to detect the expression of Tob mRNA in 31 colorectal cancers. RESULTS Compared with normal tissues, up-regulation of Tob mRNA was observed in 31 colorectal cancer tissues (P =0.020). The expression level of Tob at Dukes C + D phase was higher than Dukes A + B phase, and the difference was signifi cant (P < 0.05). However, in this study, it was found that the expression of Tob mRNA was not related with age, gender, and pathological type of colorectal cancer. CONCLUSION The up-regulation of Tob may be closely associated with tumorigenesis of colorectal carcinoma