44 research outputs found
Conditional operation of a spin qubit
We report coherent operation of a singlet-triplet qubit controlled by the
arrangement of two electrons in an adjacent double quantum dot. The system we
investigate consists of two pairs of capacitively coupled double quantum dots
fabricated by electrostatic gates on the surface of a GaAs heterostructure. We
extract the strength of the capacitive coupling between qubit and double
quantum dot and show that the present geometry allows fast conditional gate
operation, opening pathways to multi-qubit control and implementation of
quantum algorithms with spin qubits.Comment: related papers here: http://marcuslab.harvard.ed
Spin-orbit interaction in InSb nanowires
We use magnetoconductance measurements in dual-gated InSb nanowire devices
together with a theoretical analysis of weak antilocalization to accurately
extract spin-orbit strength. In particular, we show that magnetoconductance in
our three-dimensional wires is very different compared to wires in
two-dimensional electron gases. We obtain a large Rashba spin-orbit strength of
corresponding to a spin-orbit energy of
. These values underline the potential of InSb nanowires in
the study of Majorana fermions in hybrid semiconductor-superconductor devices.Comment: Version as accepted for publication as a Rapid in Phys. Rev.
Electrical control of single hole spins in nanowire quantum dots
The development of viable quantum computation devices will require the ability to preserve the coherence of quantum bits (qubits). Single electron spins in semiconductor quantum dots are a versatile platform for quantum information processing, but controlling decoherence remains a considerable challenge. Hole spins in III–V semiconductors have unique properties, such as a strong spin–orbit interaction and weak coupling to nuclear spins, and therefore, have the potential for enhanced spin control and longer coherence times. A weaker hyperfine interaction has previously been reported in self-assembled quantum dots using quantum optics techniques, but the development of hole–spin-based electronic devices in conventional III-V heterostructures has been limited by fabrication challenges. Here, we show that gate-tunable hole quantum dots can be formed in InSb nanowires and used to demonstrate Pauli spin blockade and electrical control of single hole spins. The devices are fully tunable between hole and electron quantum dots, which allows the hyperfine interaction strengths, g-factors and spin blockade anisotropies to be compared directly in the two regimes
Electrical control over single hole spins in nanowire quantum dots
Single electron spins in semiconductor quantum dots (QDs) are a versatile
platform for quantum information processing, however controlling decoherence
remains a considerable challenge. Recently, hole spins have emerged as a
promising alternative. Holes in III-V semiconductors have unique properties,
such as strong spin-orbit interaction and weak coupling to nuclear spins, and
therefore have potential for enhanced spin control and longer coherence times.
Weaker hyperfine interaction has already been reported in self-assembled
quantum dots using quantum optics techniques. However, challenging fabrication
has so far kept the promise of hole-spin-based electronic devices out of reach
in conventional III-V heterostructures. Here, we report gate-tuneable hole
quantum dots formed in InSb nanowires. Using these devices we demonstrate Pauli
spin blockade and electrical control of single hole spins. The devices are
fully tuneable between hole and electron QDs, enabling direct comparison
between the hyperfine interaction strengths, g-factors and spin blockade
anisotropies in the two regimes
Reverse quantum state engineering using electronic feedback loops
We propose an all-electronic technique to manipulate and control interacting
quantum systems by unitary single-jump feedback conditioned on the outcome of a
capacitively coupled electrometer and in particular a single-electron
transistor. We provide a general scheme to stabilize pure states in the quantum
system and employ an effective Hamiltonian method for the quantum master
equation to elaborate on the nature of stabilizable states and the conditions
under which state purification can be achieved. The state engineering within
the quantum feedback scheme is shown to be linked with the solution of an
inverse eigenvalue problem. Two applications of the feedback scheme are
presented in detail: (i) stabilization of delocalized pure states in a single
charge qubit and (ii) entanglement stabilization in two coupled charge qubits.
In the latter example we demonstrate the stabilization of a maximally entangled
Bell state for certain detector positions and local feedback operations.Comment: 23 pages, 6 figures, to be published by New Journal of Physics (2013
A multi-modal network approach to model public transport accessibility impacts of bicycle-train integration policies
In the Netherlands, the bicycle plays an important in station access and, to a lesser extent, in station egress. There is however fairly little knowledge in the potential effects of bicycle-train integration policies. The aim of this paper is to examine the impacts of bicycle-train integration policies on train ridership and job accessibility for public transport users.MethodsWe extended the Dutch National Transport Model (NVM) by implementing a detailed bicycle network linked to the public transport network, access/egress mode combinations and station specific access and egress penalties by mode and station type derived from a stated choice survey. Furthermore, the effects of several bicycletrain integration policy scenarios were examined for a case study for Randstad South, in the Netherlands, comprising a dense train network with 54 train stations.ConclusionsOur analysis shows that improving the quality of bicycle routes and parking can substantially increase train ridership and potential job accessibility for train users. Large and medium stations are more sensitive to improvements in bicycle-train integration policies, while small stations are more sensitive to improvements in the train level of service
From InSb Nanowires to Nanocubes: Looking for the Sweet Spot
High aspect ratios are highly desired to fully exploit the one-dimensional properties of indium antimonide nanowires. Here we systematically investigate the growth mechanisms and find parameters leading to long and thin nanowires. Variation of the V/III ratio and the nanowire density are found to have the same influence on the “local” growth conditions and can control the InSb shape from thin nanowires to nanocubes. We propose that the V/III ratio controls the droplet composition and the radial growth rate and these parameters determine the nanowire shape. A sweet spot is found for nanowire interdistances around 500 nm leading to aspect ratios up to 35. High electron mobilities up to 3.5 × 10^4 cm^2 V^(–1) s^(–1) enable the realization of complex spintronic and topological devices