2,164 research outputs found

    Outcome of renal grafts after simultaneous kidney/ pancreas transplantation

    Get PDF
    Nineteen patients with endstage renal failure due to Type 1 (insulin-dependent) diabetes mellitus received simultaneous pancreas/kidney transplants using bladder drainage technique. Another group of 25 Type 1 diabetic patients received pancreas/kidney transplants by the duct occlusion technique. We observed a higher incidence of rejection episodes in the patients of the bladder drainage group than those in the duct occlusion group, 14 of 19 patients (74%) vs 7 of 25 (28%) respectively. Anti CD3 antibodies (Orthoclone, OKT3) as a part of induction treatment was used more often in the bladder drainage group (58%) than in the control group (20%)

    Entropy and information in neural spike trains: Progress on the sampling problem

    Full text link
    The major problem in information theoretic analysis of neural responses and other biological data is the reliable estimation of entropy--like quantities from small samples. We apply a recently introduced Bayesian entropy estimator to synthetic data inspired by experiments, and to real experimental spike trains. The estimator performs admirably even very deep in the undersampled regime, where other techniques fail. This opens new possibilities for the information theoretic analysis of experiments, and may be of general interest as an example of learning from limited data.Comment: 7 pages, 4 figures; referee suggested changes, accepted versio

    Quality of life in Type 1 (insulin-dependent) diabetic patients prior to and after pancreas and kidney transplantation in relation to organ function

    Get PDF
    Improvement of the quality of life in Type 1 (insulin-dependent) diabetic patients with severe late complications is one of the main goals of pancreas and/or kidney grafting. To assess the influences of these treatment modalities on the different aspects of the quality of life a cross-sectional study in 157 patients was conducted. They were categorized into patients pre-transplant without dialysis (n=29; Group A), pre-transplant under dialysis (n=44; Group B), post-transplant with pancreas and kidney functioning (n=31; Group C), post-transplant with functioning kidney, but insulin therapy (n=29; Group D), post-transplant under dialysis and insulin therapy again (n=15; Group E) and patients after single pancreas transplantation and rejection, with good renal function, but insulin therapy (n=9; Group F). All patients answered a mailed, self-administered questionnaire (217 questions) consisting of a broad spectrum of rehabilitation criteria. The results indicate a better quality of life in Groups C and D as compared to the other groups. In general the scores are highest in C, but without any significant difference to D. Impressive significant differences between C or D and the other groups were found especially in their satisfaction with physical capacity, leisure-time activities or the overall quality of life. The satisfaction with the latter is highest in C (mean±SEM: 4.0±0.2 on a 1 to 5-rating scale; significantly different from A: 3.1±0.1, B: 2.7±0.2 and E: 2.6±0.3; p<0.01), followed by D (3.8±0.2; significantly different from B and E; p<0.01). Group F shows a mean of 3.1±0.4, which is not significantly different from C. The percentages of patients in each group, who are not working: A: 38 %, B: 64 %, C: 74 %, D: 66 %, E: 87 % and F: 78 % indicate that there is no marked improvement in the vocational situation after successful grafting

    From Feynman Proof of Maxwell Equations to Noncommutative Quantum Mechanics

    Full text link
    In 1990, Dyson published a proof due to Feynman of the Maxwell equations assuming only the commutation relations between position and velocity. With this minimal assumption, Feynman never supposed the existence of Hamiltonian or Lagrangian formalism. In the present communication, we review the study of a relativistic particle using ``Feynman brackets.'' We show that Poincar\'e's magnetic angular momentum and Dirac magnetic monopole are the consequences of the structure of the Lorentz Lie algebra defined by the Feynman's brackets. Then, we extend these ideas to the dual momentum space by considering noncommutative quantum mechanics. In this context, we show that the noncommutativity of the coordinates is responsible for a new effect called the spin Hall effect. We also show its relation with the Berry phase notion. As a practical application, we found an unusual spin-orbit contribution of a nonrelativistic particle that could be experimentally tested. Another practical application is the Berry phase effect on the propagation of light in inhomogeneous media.Comment: Presented at the 3rd Feynman Festival (Collage Park, Maryland, U.S.A., August 2006

    Identity and belonging in social learning groups : the importance of distinguishing social, operational and knowledge-related identity congruence

    Get PDF
    Collaborative learning has much to offer but not all learners participate fully and peer groups can be exclusive. The paper examines how belonging or 'congruence' in learning groups is related to identities of gender, age, ethnicity and socio-economic status. A study of student experiences of collaborative learning on three different blended learning courses illustrated how learners negotiate identity congruence with peer groups to belong and engage. An analytical framework that distinguishes social, operational and knowledge-related identity congruence has emerged. Contrary to received wisdom, the social aspect appears least important for learner engagement while knowledge-related identity congruence is fundamental. Some of the consequences of identity incongruence, particularly concerning gender and maturity, are discussed and the paper points towards the pedagogies which might enable identities of group members to shift so that collaborative learning can flourish

    Quantitative plane-resolved crystal growth and dissolution kinetics by coupling in situ optical microscopy and diffusion models : the case of salicylic acid in aqueous solution

    Get PDF
    The growth and dissolution kinetics of salicylic acid crystals are investigated in situ by focusing on individual microscale crystals. From a combination of optical microscopy and finite element method (FEM) modeling, it was possible to obtain a detailed quantitative picture of dissolution and growth dynamics for individual crystal faces. The approach uses real-time in situ growth and dissolution data (crystal size and shape as a function of time) to parametrize a FEM model incorporating surface kinetics and bulk to surface diffusion, from which concentration distributions and fluxes are obtained directly. It was found that the (001) face showed strong mass transport (diffusion) controlled behavior with an average surface concentration close to the solubility value during growth and dissolution over a wide range of bulk saturation levels. The (1Ì…10) and (110) faces exhibited mixed mass transport/surface controlled behavior, but with a strong diffusive component. As crystals became relatively large, they tended to exhibit peculiar hollow structures in the end (001) face, observed by interferometry and optical microscopy. Such features have been reported in a number of crystals, but there has not been a satisfactory explanation for their origin. The mass transport simulations indicate that there is a large difference in flux across the crystal surface, with high values at the edge of the (001) face compared to the center, and this flux has to be redistributed across the (001) surface. As the crystal grows, the redistribution process evidently can not be maintained so that the edges grow at the expense of the center, ultimately creating high index internal structures. At later times, we postulate that these high energy faces, starved of material from solution, dissolve and the extra flux of salicylic acid causes the voids to close

    Color-accurate underwater imaging using perceptual adaptive illumination

    Get PDF
    Capturing color in water is challenging due to the heavy non-uniform attenuation of light in water across the visible spectrum, which results in dramatic hue shifts toward blue. Yet observing color in water is important for monitoring and surveillance as well as marine biology studies related to species identification, individual and group behavior, and ecosystem health and activity monitoring. Underwater robots are equipped with motor control for large scale transects but they lack sensors that enable capturing color-accurate underwater images. We present a method for color-accurate imaging in water called perceptual adaptive illumination. This method dynamically mixes the illumination of an object in a distance-dependent way using a controllable multi-color light source. The color mix compensates correctly for color loss and results in an image whose color composition is equivalent to rendering the object in air. Experiments were conducted with a color palette in the pool and at three different coral reefs sites, and with an underwater robot collecting image data with the new sensor.United States. Office of Naval Research (Project N000140911051

    A minimally invasive tool to study immune response and skin barrier in children with atopic dermatitis

    Get PDF
    Background: Atopic dermatitis (AD) affects children of all skin types. Most research has focused on light skin types. Studies investigating biomarkers in people with AD with dark skin types are lacking. Objectives: To explore skin barrier and immune response biomarkers in stratum corneum (SC) tape strips from children with AD with different skin types. Methods: Tape strips were collected from lesional and nonlesional forearm skin of 53 children with AD and 50 controls. We analysed 28 immunomodulatory mediators, and natural moisturizing factors (NMF) and corneocyte morphology. Results: Interleukin (IL)-1β, IL-18, C-X-C motif chemokine (CXCL) 8 (CXCL8), C-C motif chemokine ligand (CCL) 22 (CCL22), CCL17, CXCL10 and CCL2 were significantly higher (P < 0·05) in lesional AD skin compared with nonlesional AD skin; the opposite trend was seen for IL-1α. CXCL8, CCL2 and CCL17 showed an association with objective SCORing Atopic Dermatitis score. NMF levels showed a gradual decrease from healthy skin to nonlesional and lesional AD skin. This gradual decreasing pattern was observed in skin type II but not in skin type VI. Skin type VI showed higher NMF levels in both nonlesional and lesional AD skin than skin type II. Corneocyte morphology was significantly different in lesional AD skin compared with nonlesional AD and healthy skin. Conclusions: Minimally invasive tape-stripping is suitable for the determination of many inflammatory mediators and skin barrier biomarkers in children with AD. This study shows differences between children with AD with skin type II and skin type VI in NMF levels, suggesting that some aspects of pathophysiological mechanisms may differ in AD children with light versus dark skin types
    • …
    corecore