53 research outputs found

    Network Analysis of Oyster Transcriptome Revealed a Cascade of Cellular Responses during Recovery after Heat Shock

    Get PDF
    Oysters, as a major group of marine bivalves, can tolerate a wide range of natural and anthropogenic stressors including heat stress. Recent studies have shown that oysters pretreated with heat shock can result in induced heat tolerance. A systematic study of cellular recovery from heat shock may provide insights into the mechanism of acquired thermal tolerance. In this study, we performed the first network analysis of oyster transcriptome by reanalyzing microarray data from a previous study. Network analysis revealed a cascade of cellular responses during oyster recovery after heat shock and identified responsive gene modules and key genes. Our study demonstrates the power of network analysis in a non-model organism with poor gene annotations, which can lead to new discoveries that go beyond the focus on individual genes

    Anion-Sensitive Regions of L-Type CaV1.2 Calcium Channels Expressed in HEK293 Cells

    Get PDF
    L-type calcium currents (ICa) are influenced by changes in extracellular chloride, but sites of anion effects have not been identified. Our experiments showed that CaV1.2 currents expressed in HEK293 cells are strongly inhibited by replacing extracellular chloride with gluconate or perchlorate. Variance-mean analysis of ICa and cell-attached patch single channel recordings indicate that gluconate-induced inhibition is due to intracellular anion effects on Ca2+ channel open probability, not conductance. Inhibition of CaV1.2 currents produced by replacing chloride with gluconate was reduced from ∼75%–80% to ∼50% by omitting β subunits but unaffected by omitting α2δ subunits. Similarly, gluconate inhibition was reduced to ∼50% by deleting an α1 subunit N-terminal region of 15 residues critical for β subunit interactions regulating open probability. Omitting β subunits with this mutant α1 subunit did not further diminish inhibition. Gluconate inhibition was unchanged with expression of different β subunits. Truncating the C terminus at AA1665 reduced gluconate inhibition from ∼75%–80% to ∼50% whereas truncating it at AA1700 had no effect. Neutralizing arginines at AA1696 and 1697 by replacement with glutamines reduced gluconate inhibition to ∼60% indicating these residues are particularly important for anion effects. Expressing CaV1.2 channels that lacked both N and C termini reduced gluconate inhibition to ∼25% consistent with additive interactions between the two tail regions. Our results suggest that modest changes in intracellular anion concentration can produce significant effects on CaV1.2 currents mediated by changes in channel open probability involving β subunit interactions with the N terminus and a short C terminal region

    Selective Interaction of Syntaxin 1A with KCNQ2: Possible Implications for Specific Modulation of Presynaptic Activity

    Get PDF
    KCNQ2/KCNQ3 channels are the molecular correlates of the neuronal M-channels, which play a major role in the control of neuronal excitability. Notably, they differ from homomeric KCNQ2 channels in their distribution pattern within neurons, with unique expression of KCNQ2 in axons and nerve terminals. Here, combined reciprocal coimmunoprecipitation and two-electrode voltage clamp analyses in Xenopus oocytes revealed a strong association of syntaxin 1A, a major component of the exocytotic SNARE complex, with KCNQ2 homomeric channels resulting in a ∼2-fold reduction in macroscopic conductance and ∼2-fold slower activation kinetics. Remarkably, the interaction of KCNQ2/Q3 heteromeric channels with syntaxin 1A was significantly weaker and KCNQ3 homomeric channels were practically resistant to syntaxin 1A. Analysis of different KCNQ2 and KCNQ3 chimeras and deletion mutants combined with in-vitro binding analysis pinpointed a crucial C-terminal syntaxin 1A-association domain in KCNQ2. Pull-down and coimmunoprecipitation analyses in hippocampal and cortical synaptosomes demonstrated a physical interaction of brain KCNQ2 with syntaxin 1A, and confocal immunofluorescence microscopy showed high colocalization of KCNQ2 and syntaxin 1A at presynaptic varicosities. The selective interaction of syntaxin 1A with KCNQ2, combined with a numerical simulation of syntaxin 1A's impact in a firing-neuron model, suggest that syntaxin 1A's interaction is targeted at regulating KCNQ2 channels to fine-tune presynaptic transmitter release, without interfering with the function of KCNQ2/3 channels in neuronal firing frequency adaptation

    Gene Expression Rhythms in the Mussel Mytilus galloprovincialis (Lam.) across an Annual Cycle

    Get PDF
    Seasonal environmental changes may affect the physiology of Mytilus galloprovincialis (Lam.), an intertidal filter-feeder bivalve occurring commonly in Mediterranean and Atlantic coastal areas. We investigated seasonal variations in relative transcript abundance of the digestive gland and the mantle (gonads) of males and females. To identify gene expression trends – in terms of relative mRNA abundance- we used a medium-density cDNA microarray (1.7 K probes) in dual-color competitive hybridization analyses. Hierarchical clustering of digestive gland microarray data showed two main branches, distinguishing profiles associated with the “hot” months (May–August) from the other months. Genes involved in chitin metabolism, associated with mussel nutrition and digestion showed higher mRNA levels during summer. Moreover, we found different gene transcriptomic patterns in the digestive glands of males when compared to females, during the four stages of mussel gonadal development. Microarray data from gonadal transcripts also displayed clear patterns during the different developmental phases respect to the resting period (stage I) with peak relative mRNA abundance at the ripe phase (stage III) for both sexes. These data showed a clear temporal pattern in transcriptomic profiles of mussels sampled over an annual cycle. Physiological response to thermal variation, food availability, and reproductive status across months may contribute to variation in relative mRNA abundance

    Transcriptional profile of breast muscle in heat stressed layers is similar to that of broiler chickens at control temperature

    Get PDF
    Abstract Background In recent years, the commercial importance of changes in muscle function of broiler chickens and of the corresponding effects on meat quality has increased. Furthermore, broilers are more sensitive to heat stress during transport and at high ambient temperatures than smaller egg-laying chickens. We hypothesised that heat stress would amplify muscle damage and expression of genes that are involved in such changes and, thus, lead to the identification of pathways and networks associated with broiler muscle and meat quality traits. Broiler and layer chickens were exposed to control or high ambient temperatures to characterise differences in gene expression between the two genotypes and the two environments. Results Whole-genome expression studies in breast muscles of broiler and layer chickens were conducted before and after heat stress; 2213 differentially-expressed genes were detected based on a significant (P < 0.05) genotype × treatment interaction. This gene set was analysed with the BioLayout Express3D and Ingenuity Pathway Analysis software and relevant biological pathways and networks were identified. Genes involved in functions related to inflammatory reactions, cell death, oxidative stress and tissue damage were upregulated in control broilers compared with control and heat-stressed layers. Expression of these genes was further increased in heat-stressed broilers. Conclusions Differences in gene expression between broiler and layer chickens under control and heat stress conditions suggest that damage of breast muscles in broilers at normal ambient temperatures is similar to that in heat-stressed layers and is amplified when broilers are exposed to heat stress. The patterns of gene expression of the two genotypes under heat stress were almost the polar opposite of each other, which is consistent with the conclusion that broiler chickens were not able to cope with heat stress by dissipating their body heat. The differentially expressed gene networks and pathways were consistent with the pathological changes that are observed in the breast muscle of heat-stressed broilers

    Formation features of composite electrochemical nickel and nanostructured zirconium boride coatings

    Get PDF
    Introduction. The electrodeposition of composite electrochemical coatings from electrolyte-colloid nickel plating containing ultradisperse zirconium boride powder is studied. The work objectives are as follows: to study mechanical-and-physical properties of the composites based on nickel and nanostructured zirconium boride, and to determine optimal conditions for the application of such electrochemical coatings.Materials and Methods. Microhardness of composite electrochemical coatings was measured using PMT-3 microhardness tester on samples with the layer thickness of 30 μm under the indentation load of 100 g. A three-ball machine was used to determine wear resistance of the coatings. Sample tests were carried out under dry friction modes and with the use of 3% RV coolant. WSD values were measured by MIR-3 TU 3-3.1954-86 microscope. To determine the internal stresses in the coating, we used a flexible cathode method up to GOST 9.302-88.Research Results. The electrolyte-colloid composition and modes of electrodeposition of composite nickel - nanostructured zirconium boride coatings are developed. Mechanicaland-physical properties (microhardness, wear resistance and internal stresses) of the obtained composite electrochemical coatings are analyzed. Recommendations for use of the developed electrolyte and the application of a composite coating on machine parts for their surface hardening are formulated.Discussion and Conclusions. Ni–ZrB2 CEC (composite electrochemical coating) has high microhardness (10–11 hPa at the indentation load of 100 g), which exceeds the microhardness of pure nickel by 1.5–2 times. As the microhardness increases, the internal stresses of Ni–ZrB2 CEC decrease. The proposed coatings were compared to chromium ones deposited from the environmentally hazardous electrolytes. The wear resistance of Ni–ZrB2 CEC is 2–5 times higher than that of chromium coatings. Thus, instead of chromic coatings, it is recommended to use the proposed composition for surface hardening of parts of the specialty machinery and industrial equipmen
    corecore