10,519 research outputs found

    A Narrowband Imaging Search for [OIII] Emission from Galaxies at z > 3

    Get PDF
    We present the results of a narrow-band survey of QSO fields at redshifts that place the [OIII](5007) emission line in the 1% 2.16micron filter. We have observed 3 square arcminutes and detected one emission line candidate object in the field around PC 1109+4642. We discuss the possibilities that this object is a star-forming galaxy at the QSO redshift, z_em=3.313 or a Seyfert galaxy. In the former case, we infer a star formation rate of 170 Msun/yr for this Kprime=21.3 object. The galaxy has a compact but resolved morphology, with a FWHM=0.6arcs, or 4.2kpc at z=3.313 (H_0=50 km/s/Mpc and q_0=0.5). The comoving density of such objects in QSO environments appears to be 0.0033Mpc^3, marginally lower (<= 3sigma) than the density observed for Halpha-emitters in absorption-line fields at z~2.5, but similar to the density of Lyman Break Galaxies at z~3. If on the other hand, most of the line emission is [OIII] from a Seyfert 2 nucleus at z=3.31, then the high inferred volume density could imply a large evolution in the Seyfert 2 luminosity function from the current epoch. We find the field containing the object to also contain many faint extended objects in the Kprime image, but little significant excess over the expected number-magnitude relation. We discuss the implication of the emission line being a longer wavelength line at a lower redshift

    Adaptive Optics Near-Infrared Spectroscopy of the Sgr A* Cluster

    Full text link
    We present K-band λ/Δλ\lambda/\Delta\lambda ~ 2600 spectroscopy of five stars (K ~ 14 - 16 mag) within 0.''5 of Sgr A*, the radio source associated with the compact massive object suspected to be a 2.6 x 106^{6} \msun black hole at the center of our Galaxy. High spatial resolution of ~ 0.''09, and good strehl ratios of ~ 0.2 achieved with adaptive optics on the 10-meter Keck telescope make it possible to measure moderate-resolution spectra of these stars individually for the first time. Two stars (S0-17 and S0-18) are identified as late-type stars by the detection of CO bandhead absorption in their spectra. Their absolute K magnitudes and CO bandhead absorption strengths are consistent with early K giants. Three stars (S0-1, S0-2, and S0-16), with rproj_{proj} << 0.0075 pc (~ 0.''2) from Sgr A*, lack CO bandhead absorption, confirming the results of earlier lower spectral and lower spatial resolution observations that the majority of the stars in the Sgr A* Cluster are early-type stars. The absolute K magnitudes of the early-type stars suggest that they are late O - early B main sequence stars of ages << 20 Myr. The presence of young stars in the Sgr A* Cluster, so close to the central supermassive black hole, poses the intriguing problem of how these stars could have formed, or could have been brought, within its strong tidal field.Comment: 19 pages, 8 figures, 2 tables. Accepted for publication in Ap

    1-1.4 Micron Spectral Atlas of Stars

    Get PDF
    We present a catalog of J-band (1.08 um to 1.35 um) stellar spectra at low resolution (R ~ 400). The targets consist of 105 stars ranging in spectral type from O9.5 to M7 and luminosity classes I through V. The relatively featureless spectra of hot stars, earlier than A4, can be used to remove the atmospheric features which dominate ground-based J-band spectroscopy. We measure equivalent widths for three absorption lines and nine blended features which we identify in the spectra. Using detailed comparison with higher resolution spectra, we demonstrate that low resolution data can be used for stellar classification, since several features depend on the effective temperature and gravity. For example The CN index (1.096 - 1.104 um) decreases with temperature, but the strength of a blended feature at 1.28 um (consisting of primarily P beta) increases. The slope of a star's spectrum can also be used to estimate its effective temperature. The luminosity class of a star correlates with the ratio of the Mg I (1.1831 um) line to a blend of several species at 1.16 um. Using these indicators, a star can be classified to within several subclasses. Fifteen stars with particularly high and low metal abundances are included in the catalog and some spectral dependence on metal abundance is also found.Comment: 35 pages, 10 figures (3a-e are in gif format. For complete high resolution figures, go to http://www.astro.ucla.edu/~malkan/newjspec/) ; Accepted for published in ApJS; For associated spectra files, see http://www.astro.ucla.edu/~malkan/newjspec

    K-Band Spectroscopy of an Obscured Massive Stellar Cluster in the Antennae Galaxies (NGC 4038/4039) with NIRSPEC

    Get PDF
    We present infrared spectroscopy of the Antennae Galaxies (NGC 4038/4039) with NIRSPEC at the W. M. Keck Observatory. We imaged the star clusters in the vicinity of the southern nucleus (NGC 4039) in 0.39" seeing in K-band using NIRSPEC's slit-viewing camera. The brightest star cluster revealed in the near-IR (M_K(0) = -17.9) is insignificant optically, but coincident with the highest surface brightness peak in the mid-IR (12-18 um) ISO image presented by Mirabel et al (1998). We obtained high signal-to-noise 2.03-2.45 um spectra of the nucleus and the obscured star cluster at R = 1900. The cluster is very young (age ~ 4 Myr), massive (M ~ 16E6 M_sun), and compact (density ~ 115 M_sun pc^(-3) within a 32 pc half-light radius), assuming a Salpeter IMF (0.1-100 M_sun). Its hot stars have a radiation field characterized by T_eff ~ 39,000 K, and they ionize a compact HII region with n_e ~ 10^4 cm^(-3). The stars are deeply embedded in gas and dust (A_V = 9-10 mag), and their strong FUV field powers a clumpy photodissociation region with densities n_H > 10^5 cm^(-3) on scales of ~ 200 pc, radiating L{H_2 1-0 S(1)}= 9600 L_sun.Comment: 4 pages, 4 embedded figures, uses emulateapj.sty. To appear in ApJL. Also available at http://astro.berkeley.edu/~agilber

    The Smallest Mass Ratio Young Star Spectroscopic Binaries

    Get PDF
    Using high resolution near-infrared spectroscopy with the Keck telescope, we have detected the radial velocity signatures of the cool secondary components in four optically identified pre-main-sequence, single-lined spectroscopic binaries. All are weak-lined T Tauri stars with well-defined center of mass velocities. The mass ratio for one young binary, NTTS 160905-1859, is M2/M1 = 0.18+/-0.01, the smallest yet measured dynamically for a pre-main-sequence spectroscopic binary. These new results demonstrate the power of infrared spectroscopy for the dynamical identification of cool secondaries. Visible light spectroscopy, to date, has not revealed any pre-main-sequence secondary stars with masses <0.5 M_sun, while two of the young systems reported here are in that range. We compare our targets with a compilation of the published young double-lined spectroscopic binaries and discuss our unique contribution to this sample.Comment: Accepted for publication in the April, 2002, ApJ; 6 figure

    Spectropolarimetric observations of Herbig Ae/Be Stars I: HiVIS spectropolarimetric calibration and reduction techniques

    Full text link
    Using the HiVIS spectropolarimeter built for the Haleakala 3.7m AEOS telescope in Hawaii, we are collecting a large number of high precision spectropolarimetrc observations of stars. In order to precisely measure very small polarization changes, we have performed a number of polarization calibration techniques on the AEOS telescope and HiVIS spectrograph. We have extended our dedicated IDL reduction package and have performed some hardware upgrades to the instrument. We have also used the ESPaDOnS spectropolarimeter on CFHT to verify the HiVIS results with back-to-back observations of MWC 361 and HD163296. Comparision of this and other HiVIS data with stellar observations from the ISIS and WW spectropolarimeters in the literature further shows the usefulness of this instrument.Comment: 35 pages, 44 figures, Accepted by PAS

    Carbon assimilation strategies in ultrabasic groundwater: clues from the integrated study of a serpentinization-influenced aquifer

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Seyler, L. M., Brazelton, W. J., McLean, C., Putman, L. I., Hyer, A., Kubo, M. D. Y., Hoehler, T., Cardace, D., & Schrenk, M. O. . Carbon assimilation strategies in ultrabasic groundwater: clues from the integrated study of a serpentinization-influenced aquifer. mSystems, 5(2), (2020): e00607-00619, doi: 10.1128/mSystems.00607-19.Serpentinization is a low-temperature metamorphic process by which ultramafic rock chemically reacts with water. Such reactions provide energy and materials that may be harnessed by chemosynthetic microbial communities at hydrothermal springs and in the subsurface. However, the biogeochemistry mediated by microbial populations that inhabit these environments is understudied and complicated by overlapping biotic and abiotic processes. We applied metagenomics, metatranscriptomics, and untargeted metabolomics techniques to environmental samples taken from the Coast Range Ophiolite Microbial Observatory (CROMO), a subsurface observatory consisting of 12 wells drilled into the ultramafic and serpentinite mélange of the Coast Range Ophiolite in California. Using a combination of DNA and RNA sequence data and mass spectrometry data, we found evidence for several carbon fixation and assimilation strategies, including the Calvin-Benson-Bassham cycle, the reverse tricarboxylic acid cycle, the reductive acetyl coenzyme A (acetyl-CoA) pathway, and methylotrophy, in the microbial communities inhabiting the serpentinite-hosted aquifer. Our data also suggest that the microbial inhabitants of CROMO use products of the serpentinization process, including methane and formate, as carbon sources in a hyperalkaline environment where dissolved inorganic carbon is unavailable.We thank McLaughlin Reserve, in particular Paul Aigner and Cathy Koehler, for hosting sampling at CROMO and providing access to the wells, A. Daniel Jones and Anthony Schilmiller for their advice regarding metabolite extraction and mass spectrometry, Elizabeth Kujawinski for her guidance in metabolomics data analysis and interpretation, and Julia McGonigle, Christopher Thornton, and Katrina Twing for assistance with metagenomic and computational analyses

    Spectropolarimetry of the H-alpha line in Herbig Ae/Be stars

    Full text link
    Using the HiVIS spectropolarimeter built for the Haleakala 3.7m AEOS telescope, we have obtained a large number of high precision spectropolarimetrc observations (284) of Herbig AeBe stars collected over 53 nights totaling more than 300 hours of observing. Our sample of five HAeBe stars: AB Aurigae, MWC480, MWC120, MWC158 and HD58647, all show systematic variations in the linear polarization amplitude and direction as a function of time and wavelength near the H-alpha line. In all our stars, the H-alpha line profiles show evidence of an intervening disk or outflowing wind, evidenced by strong emission with an absorptive component. The linear polarization varies by 0.2% to 1.5% with the change typically centered in the absorptive part of the line profile. These observations are inconsistent with a simple disk-scattering model or a depolarization model which produce polarization changes centered on the emmissive core. We speculate that polarized absorption via optical pumping of the intervening gas may be the cause.Comment: Accepted for publication in ApJ Letter
    • …
    corecore