9 research outputs found

    P2Y13 receptors regulate microglial morphology, surveillance, and resting levels of interleukin 1β release

    Get PDF
    Microglia sense their environment using an array of membrane receptors. While P2Y12 receptors are known to play a key role in targeting directed motility of microglial processes to sites of damage where ATP/ADP is released, little is known about the role of P2Y13 , which transcriptome data suggest is the second most expressed neurotransmitter receptor in microglia. We show that, in patch-clamp recordings in acute brain slices from mice lacking P2Y13 receptors, the THIK-1 K+ current density evoked by ADP activating P2Y12 receptors was increased by ~50%. This increase suggested that the P2Y12 -dependent chemotaxis response should be potentiated; however, the time needed for P2Y12 -mediated convergence of microglial processes onto an ADP-filled pipette or to a laser ablation was longer in the P2Y13 KO. Anatomical analysis showed that the density of microglia was unchanged, but that they were less ramified with a shorter process length in the P2Y13 KO. Thus, chemotactic processes had to grow further and so arrived later at the target, and brain surveillance was reduced by ~30% in the knock-out. Blocking P2Y12 receptors in brain slices from P2Y13 KO mice did not affect surveillance, demonstrating that tonic activation of these high-affinity receptors is not needed for surveillance. Strikingly, baseline interleukin-1β release was increased fivefold while release evoked by LPS and ATP was not affected in the P2Y13 KO, and microglia in intact P2Y13 KO brains were not detectably activated. Thus, P2Y13 receptors play a role different from that of their close relative P2Y12 in regulating microglial morphology and function

    The node of Ranvier in CNS pathology

    Get PDF

    The node of Ranvier in CNS pathology.

    Get PDF
    Healthy nodes of Ranvier are crucial for action potential propagation along myelinated axons, both in the central and in the peripheral nervous system. Surprisingly, the node of Ranvier has often been neglected when describing CNS disorders, with most pathologies classified simply as being due to neuronal defects in the grey matter or due to oligodendrocyte damage in the white matter. However, recent studies have highlighted changes that occur in pathological conditions at the node of Ranvier, and at the associated paranodal and juxtaparanodal regions where neurons and myelinating glial cells interact. Lengthening of the node of Ranvier, failure of the electrically resistive seal between the myelin and the axon at the paranode, and retraction of myelin to expose voltage-gated K(+) channels in the juxtaparanode, may contribute to altering the function of myelinated axons in a wide range of diseases, including stroke, spinal cord injury and multiple sclerosis. Here, we review the principles by which the node of Ranvier operates and its molecular structure, and thus explain how defects at the node and paranode contribute to neurological disorders

    Endogenous GABA controls oligodendrocyte lineage cell number, myelination, and CNS internode length

    Get PDF
    Adjusting the thickness and internodal length of the myelin sheath is a mechanism for tuning the conduction velocity of axons to match computational needs. Interactions between oligodendrocyte precursor cells (OPCs) and developing axons regulate the formation of myelin around axons. We now show, using organotypic cerebral cortex slices from mice expressing eGFP in Sox10‐positive oligodendrocytes, that endogenously released GABA, acting on GABAA receptors, greatly reduces the number of oligodendrocyte lineage cells. The decrease in oligodendrocyte number correlates with a reduction in the amount of myelination but also an increase in internode length, a parameter previously thought to be set by the axon diameter or to be a property intrinsic to oligodendrocytes. Importantly, while TTX block of neuronal activity had no effect on oligodendrocyte lineage cell number when applied alone, it was able to completely abolish the effect of blocking GABAA receptors, suggesting that control of myelination by endogenous GABA may require a permissive factor to be released from axons. In contrast, block of AMPA/KA receptors had no effect on oligodendrocyte lineage cell number or myelination. These results imply that, during development, GABA can act as a local environmental cue to control myelination and thus influence the conduction velocity of action potentials within the CNS. GLIA 2017;65:309–32

    Phospho-dependent binding of the clathrin AP2 adaptor complex to GABA(A) receptors regulates the efficacy of inhibitory synaptic transmission

    No full text
    The efficacy of synaptic inhibition depends on the number of γ-aminobutyric acid type A receptors (GABA(A)Rs) expressed on the cell surface of neurons. The clathrin adaptor protein 2 (AP2) complex is a critical regulator of GABA(A)R endocytosis and, hence, surface receptor number. Here, we identify a previously uncharacterized atypical AP2 binding motif conserved within the intracellular domains of all GABA(A)R β subunit isoforms. This AP2 binding motif (KTHLRRRSSQLK in the β3 subunit) incorporates the major sites of serine phosphorylation within receptor β subunits, and phosphorylation within this site inhibits AP2 binding. Furthermore, by using surface plasmon resonance, we establish that a peptide (pepβ3) corresponding to the AP2 binding motif in the GABA(A)R β3 subunit binds to AP2 with high affinity only when dephosphorylated. Moreover, the pepβ3 peptide, but not its phosphorylated equivalent (pepβ3-phos), enhanced the amplitude of miniature inhibitory synaptic current and whole cell GABA(A)R current. These effects of pepβ3 on GABA(A)R current were occluded by inhibitors of dynamin-dependent endocytosis supporting an action of pepβ3 on GABA(A)R endocytosis. Therefore phospho-dependent regulation of AP2 binding to GABA(A)Rs provides a mechanism to specify receptor cell surface number and the efficacy of inhibitory synaptic transmission

    Miro1 Is a Calcium Sensor for Glutamate Receptor-Dependent Localization of Mitochondria at Synapses

    Get PDF
    Energy use, mainly to reverse ion movements in neurons, is a fundamental constraint on brain information processing. Trafficking of mitochondria to locations in neurons where there are large ion fluxes is essential for powering neural function. Mitochondrial trafficking is regulated by Ca2+ entry through ionotropic glutamate receptors, but the underlying mechanism is unknown. We show that the protein Miro1 links mitochondria to KIF5 motor proteins, allowing mitochondria to move along microtubules. This linkage is inhibited by micromolar levels of Ca2+ binding to Miro1. With the EF hand domains of Miro1 mutated to prevent Ca2+ binding, Miro1 could still facilitate mitochondrial motility, but mitochondrial stopping induced by glutamate or neuronal activity was blocked. Activating neuronal NMDA receptors with exogenous or synaptically released glutamate led to Miro1 positioning mitochondria at the postsynaptic side of synapses. Thus, Miro1 is a key determinant of how energy supply is matched to energy usage in neurons
    corecore