3,725 research outputs found

    Enhancement of the electric dipole moment of the electron in the YbF molecule

    Full text link
    We calculate an effective electric field on the unpaired electron in the YbF molecule. This field determines sensitivity of the molecular experiment to the electric dipole moment of the electron. We use experimental value of the spin-doubling constant to estimate the admixture of the configuration with the hole in the 4f-shell of Ytterbium to the ground state of the molecule. This admixture reduces the field by 7%. Our value for the effictive field is 5.1 a.u. = 2.5 10^{10} V/cm.Comment: 5 pages, LATEX, uses revtex.st

    Hyperfine-interaction- and magnetic-field-induced Bose-Einstein-statistics suppressed two-photon transitions

    Full text link
    Two-photon transitions between atomic states of total electronic angular momentum Ja=0J_a=0 and Jb=1J_b=1 are forbidden when the photons are of the same energy. This selection rule is analogous to the Landau-Yang theorem in particle physics that forbids decays of vector particle into two photons. It arises because it is impossible to construct a total angular momentum J2Îł=1J_{2\gamma}=1 quantum-mechanical state of two photons that is permutation symmetric, as required by Bose-Einstein statistics. In atoms with non-zero nuclear spin, the selection rule can be violated due to hyperfine interactions. Two distinct mechanisms responsible for the hyperfine-induced two-photon transitions are identified, and the hyperfine structure of the induced transitions is evaluated. The selection rule is also relaxed, even for zero-nuclear-spin atoms, by application of an external magnetic field. Once again, there are two similar mechanisms at play: Zeeman splitting of the intermediate-state sublevels, and off-diagonal mixing of states with different total electronic angular momentum in the final state. The present theoretical treatment is relevant to the ongoing experimental search for a possible Bose-Einstein-statistics violation using two-photon transitions in barium, where the hyperfine-induced transitions have been recently observed, and the magnetic-field-induced transitions are being considered both as a possible systematic effect, and as a way to calibrate the measurement

    Molecular CP-violating magnetic moment

    Full text link
    A concept of CP-violating (T,P-odd) permanent molecular magnetic moments ÎĽCP\mu^{CP} is introduced. We relate the moments to the electric dipole moment of electron (eEDM) and estimate ÎĽCP\mu^{CP} for several diamagnetic polar molecules. The moments exhibit a steep, Z^5, scaling with the nuclear charge Z of the heavier molecular constituent. A measurement of the CP-violating magnetization of a polarized sample of heavy molecules may improve the present limit on eEDM by several orders of magnitude.Comment: 4 pages, no figures, submitted to PR

    Orbital ordering in manganites in the band approach

    Full text link
    We consider the orbital ordering in LaMnO3 and similar systems, proceeding from the band picture. We show that for the realistic magnetic structure of A-type there exists a complete nesting betweeen two e_g-bands. As a result there occurs an instability towards an excitonic insulator-like state -- an electron-hole pairing with the wave vector Q=(\pi,\pi), which opens a gap in the spectrum and makes the system insulating. In the resulting state there appeasr an orbital ordering -- orbital density wave (ODW), the type of which coincides with those existing in LaMnO3.Comment: 4 pages, 2 figure

    Reactor as a Source of Antineutrinos: Thermal Fission Energy

    Full text link
    Deeper insight into the features of a reactor as a source of antineutrinos is required for making further advances in studying the fundamental properties of the neutrino. The relationship between the thermal power of a reactor and the rate of the chain fission reaction in its core is analyzed.Comment: 15 pages in LaTex and 4 ps figure

    Using Molecules to Measure Nuclear Spin-Dependent Parity Violation

    Full text link
    Nuclear spin-dependent parity violation arises from weak interactions between electrons and nucleons, and from nuclear anapole moments. We outline a method to measure such effects, using a Stark-interference technique to determine the mixing between opposite-parity rotational/hyperfine levels of ground-state molecules. The technique is applicable to nuclei over a wide range of atomic number, in diatomic species that are theoretically tractable for interpretation. This should provide data on anapole moments of many nuclei, and on previously unmeasured neutral weak couplings

    Dynamics of relativistic solitons

    Full text link
    Relativistic solitons are self-trapped, finite size, electromagnetic waves of relativistic intensity that propagate without diffraction spreading. They have been predicted theoretically within the relativistic fluid approximation, and have been observed in multi-dimensional particle in cell simulations of laser pulse interaction with the plasma. Solitons were observed in the laser irradiated plasmas with the proton imaging technique as well. This paper reviews many theoretical results on relativistic solitons in electron-ion plasmas.Comment: 12th International Congress on Plasma Physics, 25-29 October 2004, Nice (France

    Maxwell-Drude-Bloch dissipative few-cycle optical solitons

    Get PDF
    We study the propagation of few-cycle pulses in two-component medium consisting of nonlinear amplifying and absorbing two-level centers embedded into a linear and conductive host material. First we present a linear theory of propagation of short pulses in a purely conductive material, and demonstrate the diffusive behavior for the evolution of the low-frequency components of the magnetic field in the case of relatively strong conductivity. Then, numerical simulations carried out in the frame of the full nonlinear theory involving the Maxwell-Drude-Bloch model reveal the stable creation and propagation of few-cycle dissipative solitons under excitation by incident femtosecond optical pulses of relatively high energies. The broadband losses that are introduced by the medium conductivity represent the main stabilization mechanism for the dissipative few-cycle solitons.Comment: 38 pages, 10 figures. submitted to Physical Review

    Enhancement of the electric dipole moment of the electron in BaF molecule

    Full text link
    We report results of ab initio calculation of the spin-rotational Hamiltonian parameters including P- and P,T-odd terms for the BaF molecule. The ground state wave function of BaF molecule is found with the help of the Relativistic Effective Core Potential method followed by the restoration of molecular four-component spinors in the core region of barium in the framework of a non-variational procedure. Core polarization effects are included with the help of the atomic Many Body Perturbation Theory for Barium atom. For the hyperfine constants the accuracy of this method is about 5-10%.Comment: 8 pages, REVTEX, report at II International Symposium on Symmetries in Subatomic Physics, Seattle 199

    Development of a triple GEM UV-photon detector operated in pure CF4 for the PHENIX experiment

    Full text link
    Results obtained with a triple GEM detector operated in pure CF4 with and without a reflective CsI photocathode are presented. The detector operates in a stable mode at gains up to 10^4. A deviation from exponential growth starts to develop when the total charge exceeds ~ 4 10^6 e leading to gain saturation when the total charge is ~ 2 10^7 e and making the structure relatively robust against discharges. No aging effects are observed in the GEM foils after a total accumulated charge of ~ 10 mC/cm^2 at the anode. The ion back-flow current to the reflective photocathode is comparable to the electron current to the anode. However, no significant degradation of the CsI photocathode is observed for a total ion back-flow charge of ~ 7 mC/cm^2.Comment: 14 pages, 11 figures, Submitted to NIM
    • …
    corecore