268 research outputs found
Surprising simplicity in the modeling of dynamic granular intrusion
Granular intrusions, such as dynamic impact or wheel locomotion, are complex
multiphase phenomena where the grains exhibit solid-like and fluid-like
characteristics together with an ejected gas-like phase. Despite decades of
modeling efforts, a unified description of the physics in such intrusions is as
yet unknown. Here we show that a continuum model based on the simple notions of
frictional flow and tension-free separation describes complex granular
intrusions near free surfaces. This model captures dynamics in a variety of
experiments including wheel locomotion, plate intrusions, and running legged
robots. The model reveals that three effects (a static contribution and two
dynamic ones) primarily give rise to intrusion forces in such scenarios.
Identification of these effects enables the development of a further
reduced-order technique (Dynamic Resistive Force Theory) for rapid modeling of
granular locomotion of arbitrarily shaped intruders. The continuum-motivated
strategy we propose for identifying physical mechanisms and corresponding
reduced-order relations has potential use for a variety of other materials.Comment: 41 pages including supplementary document, 10 figures, and 8 vide
Effects of photo and thermo cycles on flowering time in barley: a genetical phenomics approach
The effects of synchronous photo (16 h daylength) and thermo (2 °C daily fluctuation) cycles on flowering time were compared with constant light and temperature treatments using two barley mapping populations derived from the facultative cultivar ‘Dicktoo’. The ‘Dicktoo’בMorex’ (spring) population (DM) segregates for functional differences in alleles of candidate genes for VRN-H1, VRN-H3, PPD-H1, and PPD-H2. The first two loci are associated with the vernalization response and the latter two with photoperiod sensitivity. The ‘Dicktoo’בKompolti korai’ (winter) population (DK) has a known functional polymorphism only at VRN-H2, a locus associated with vernalization sensitivity. Flowering time in both populations was accelerated when there was no fluctuating factor in the environment and was delayed to the greatest extent with the application of synchronous photo and thermo cycles. Alleles at VRN-H1, VRN-H2, PPD-H1, and PPD-H2—and their interactions—were found to be significant determinants of the increase/decrease in days to flower. Under synchronous photo and thermo cycles, plants with the Dicktoo (recessive) VRN-H1 allele flowered significantly later than those with the Kompolti korai (recessive) or Morex (dominant) VRN-H1 alleles. The Dicktoo VRN-H1 allele, together with the late-flowering allele at PPD-H1 and PPD-H2, led to the greatest delay. The application of synchronous photo and thermo cycles changed the epistatic interaction between VRN-H2 and VRN-H1: plants with Dicktoo type VRN-H1 flowered late, regardless of the allele phase at VRN-H2. Our results are novel in demonstrating the large effects of minor variations in environmental signals on flowering time: for example, a 2 °C thermo cycle caused a delay in flowering time of 70 d as compared to a constant temperature
Efficacy of simple continuum models for diverse granular intrusions
Granular intrusion is commonly observed in natural and human-made settings.
Unlike typical solids and fluids, granular media can simultaneously display
fluid-like and solid-like characteristics in a variety of intrusion scenarios.
This multi-phase behavior increases the difficulty of accurately modeling these
and other yielding (or flowable) materials. Micro-scale modeling methods, such
as DEM (Discrete Element Method), capture this behavior by modeling the media
at the grain scale, but there is often interest in the macro-scale
characterizations of such systems. We examine the efficacy of a macro-scale
continuum approach in modeling and understanding the physics of various
macroscopic phenomena in a variety of granular intrusion cases using two basic
frictional yielding constitutive models. We compare predicted granular force
response and material flow to experimental data in four quasi-2D intrusion
cases: (1) depth-dependent force response in horizontal submerged-intruder
motion; (2) separation dependent drag variation in parallel-plate
vertical-intrusion; (3) initial-density-dependent drag fluctuations in free
surface plowing, and (4) flow zone development during vertical plate intrusions
in under-compacted granular media. Our continuum modeling approach captures the
flow process and drag forces while providing key meso- and macro-scopic
insights. The modeling results are then compared to experimental data. Our
study highlights how continuum modeling approaches provide an alternative for
efficient modeling as well as a conceptual understanding of various granular
intrusion phenomena.Comment: 14 pages, 8 figures, and 4 movie
Multiscale Analysis of Spreading in a Large Communication Network
In temporal networks, both the topology of the underlying network and the
timings of interaction events can be crucial in determining how some dynamic
process mediated by the network unfolds. We have explored the limiting case of
the speed of spreading in the SI model, set up such that an event between an
infectious and susceptible individual always transmits the infection. The speed
of this process sets an upper bound for the speed of any dynamic process that
is mediated through the interaction events of the network. With the help of
temporal networks derived from large scale time-stamped data on mobile phone
calls, we extend earlier results that point out the slowing-down effects of
burstiness and temporal inhomogeneities. In such networks, links are not
permanently active, but dynamic processes are mediated by recurrent events
taking place on the links at specific points in time. We perform a multi-scale
analysis and pinpoint the importance of the timings of event sequences on
individual links, their correlations with neighboring sequences, and the
temporal pathways taken by the network-scale spreading process. This is
achieved by studying empirically and analytically different characteristic
relay times of links, relevant to the respective scales, and a set of temporal
reference models that allow for removing selected time-domain correlations one
by one
Circadian pattern and burstiness in mobile phone communication
The temporal communication patterns of human individuals are known to be
inhomogeneous or bursty, which is reflected as the heavy tail behavior in the
inter-event time distribution. As the cause of such bursty behavior two main
mechanisms have been suggested: a) Inhomogeneities due to the circadian and
weekly activity patterns and b) inhomogeneities rooted in human task execution
behavior. Here we investigate the roles of these mechanisms by developing and
then applying systematic de-seasoning methods to remove the circadian and
weekly patterns from the time-series of mobile phone communication events of
individuals. We find that the heavy tails in the inter-event time distributions
remain robustly with respect to this procedure, which clearly indicates that
the human task execution based mechanism is a possible cause for the remaining
burstiness in temporal mobile phone communication patterns.Comment: 17 pages, 12 figure
Simulation of compound anchor intrusion in dry sand by a hybrid FEM+SPH method
Preprint submitted to Computers and GeotechnicsThe intrusion of deformable compound anchors in dry sand is simulated by coupling the Finite Element Method (FEM) with Smoothed Particle Hydrodynamics (SPH). This novel approach can calculate granular flows at lower computational cost than SPH alone. The SPH and FEM domains interact through reaction forces calculated from balance equations and are assigned the same soil constitutive model (Drucker-Prager) and the same constitutive parameters (measured or calibrated). Experimental force-displacement curves are reproduced for penetration depths of 8 mm or more (respectively, 20 mm or more) for spike-shaped (respectively, fan-shaped) anchors with 1 to 6 blades. As the number of blades increases, simulations reveal that the granular flow under the anchor deviates from the vertical and that the horizontal granular flow transitions from orthoradial to radial. We interpret the strain field distribution as the result of soil arching, i.e., the transfer of stress from a yielding mass of soil onto adjoining stationary soil masses. Arching is fully active when the radial distance between blade end points is less than a critical length. In that case, the normal stress that acts on the compound anchor at a given depth reaches the normal stress that acts on a disk-shaped anchor of same radius. A single-blade anchor produces soil deformation and failure similar to Prandtl’s foundation sliding model. Multiblade anchors produce a complex failure mechanism that combines sliding and arching
Density of critical clusters in strips of strongly disordered systems
We consider two models with disorder dominated critical points and study the
distribution of clusters which are confined in strips and touch one or both
boundaries. For the classical random bond Potts model in the large-q limit we
study optimal Fortuin-Kasteleyn clusters by combinatorial optimization
algorithm. For the random transverse-field Ising chain clusters are defined and
calculated through the strong disorder renormalization group method. The
numerically calculated density profiles close to the boundaries are shown to
follow scaling predictions. For the random bond Potts model we have obtained
accurate numerical estimates for the critical exponents and demonstrated that
the density profiles are well described by conformal formulae.Comment: 9 pages, 9 figure
Associations between plant density and yield components using different sowing times in wheat (Triticum aestivum L.)
The yield potential of wheat depends not only on genetic × environmental interactions, but also on various agronomic factors such as sowing date or the seed rate used for sowing. The main aim of this work was to determine possible correlations between the effects of different sowing dates and plant densities on the yield components of a collection of 48 wheat genotypes. Two-way analysis of variance on the data revealed that both sowing date and plant density, as main components, only had a minor effect on the yield component patterns. Correlation analysis, however, indicated that the sowing date had a greater effect on the yield components, while plant density was in closer correlation with the heading time (r = 0.90). The patterns determined for individual yield components at two different sowing dates and plant densities showed significant differences for spike length, spike fertility, grain number in the main spike, number of productive tillers, grain number on side tillers, mean grain number and grain weight. Genotypes that carry the winter (recessive) alleles of genes regulating vernalisation processes (VRN-A1, VRN-B1, VRN-D1) and the sensitive (recessive) alleles of the two genes responsible for photoperiod sensitivity (PPD-B1, PPD-D1) may have better tillering and consequently higher grain yield, though this may depend greatly on the year
Effect of additional water supply during grain filling on protein composition and epitope characteristics of winter oats
Pure oats in gluten-free diets (GFD) represent important nutritional benefits for people suffering from celiac disease (CD). However, oat cultivars do not contain the typical CD-related wheat gliadin analog polypeptides. Emerging evidence suggests that oat cultivars containing gluten-like epitopes in avenin sequences may pose potential health risks for celiac patients in rare cases, depending on the individual’s susceptibility. Consequently, it is necessary to screen oats in terms of protein and epitope composition, to be able to select safe varieties for gluten-free applications. The overall aim of our study is to investigate the variation of oat protein composition directly related to health-related and techno-functional properties and to examine how the protein compositional parameters change due to irrigation during the grain-filling period as compared to the natural rain-fed grown, in a large winter oat population of different geographic origin.
Elements of an oat sample population representing 164 winter oat varieties from 8 countries and the protein composition of resulting samples have been characterized. Size distribution of the total protein extracts has been analyzed by SE-HPLC, while the 70% ethanol extracted proteins were analyzed by RP-HPLC. Protein extracts are separated into 3 main groups of fractions on the SE-HPLC column; polymeric, avenin, and non-avenin monomeric protein groups, representing 59.17–80.87%, 12.89–31.03%, and 3.40–9.41% of total protein content, respectively. The ratio of polymeric to monomeric proteins varied between 1.71 and 6.07. 91 RP-HPLC-separated peaks have been differentiated from the ethanol extractable proteins of the entire population.
The various parameters identified a lot of variation, confirming the significance of genotypic variation. In addition, it was also established that the additional water supply during grain filling significantly affected the various quantitative parameters of protein content, but not its qualitative structure. This environmental effect, however, was strongly genotype-dependent. Winter oat genotypes with low levels of epitope content were identified and it was proven that these characteristics were independent of the environmental factor of water availability. These genotypes are appropriate for initiating a specific breeding program to yield oat cultivars suitable for CD patients
- …