2,677 research outputs found

    On the possibility of applying the quasi-isothermal St\"ackel's model to our Galaxy

    Full text link
    An earlier derived quasi-isothermal St\"ackel's model of mass distribution in stellar systems and the corresponding formula for space density are applied to our Galaxy. The model rotation curve is fitted to HI kinematical data. The structural and scale parameters of the model are estimated and the corresponding density contours for our Galaxy are presented.Comment: 7 pages, 3 figures. Accepted for publication in Baltic Astronomy (BA

    AC Conductance in Dense Array of the Ge0.7_{0.7}Si0.3_{0.3} Quantum Dots in Si

    Full text link
    Complex AC-conductance, σAC\sigma^{AC}, in the systems with dense Ge0.7_{0.7}Si0.3_{0.3} quantum dot (QD) arrays in Si has been determined from simultaneous measurements of attenuation, ΔΓ=Γ(H)Γ(0)\Delta\Gamma=\Gamma(H)-\Gamma(0), and velocity, ΔV/V=(V(H)V(0))/V(0)\Delta V /V=(V(H)-V(0)) / V(0), of surface acoustic waves (SAW) with frequencies ff = 30-300 MHz as functions of transverse magnetic field HH \leq 18 T in the temperature range TT = 1-20 K. It has been shown that in the sample with dopant (B) concentration 8.2×1011 \times 10^{11} cm2^{-2} at temperatures TT \leq4 K the AC conductivity is dominated by hopping between states localized in different QDs. The observed power-law temperature dependence, σ1(H=0)T2.4\sigma_1(H=0)\propto T^{2.4}, and weak frequency dependence, σ1(H=0)ω0\sigma_1(H=0)\propto \omega^0, of the AC conductivity are consistent with predictions of the two-site model for AC hopping conductivity for the case of ωτ0\omega \tau_0 \gg 1, where ω=2πf\omega=2\pi f is the SAW angular frequency and τ0\tau_0 is the typical population relaxation time. At T>T > 7 K the AC conductivity is due to thermal activation of the carriers (holes) to the mobility edge. In intermediate temperature region 4<T< < T< 7 K, where AC conductivity is due to a combination of hops between QDs and diffusion on the mobility edge, one succeeded to separate both contributions. Temperature dependence of hopping contribution to the conductivity above TT^*\sim 4.5 K saturates, evidencing crossover to the regime where ωτ0<\omega \tau_0 < 1. From crossover condition, ωτ0(T)\omega \tau_0(T^*) = 1, the typical value, τ0\tau_0, of the relaxation time has been determined.Comment: revtex, 3 pages, 6 figure

    Thermoconvective flow velocity in a high-speed magnetofluid seal after it has stopped

    Get PDF
    Convective flow is investigated in the high-speed (linear velocity of the shaft seal is more than 1 m/s) magnetofluid shaft seal after it has been stopped. Magnetic fluid is preliminarily heated due to viscous friction in the moving seal. After the shaft has been stopped, nonuniform heated fluid remains under the action of a high-gradient magnetic field. Numerical analysis has revealed that in this situation, intense thermomagnetic convection is initiated. The velocity of magnetic fluid depends on its viscosity. For the fluid with viscosity of 2 × 10 -4 m 2/s the maximum flow velocity within the volume of magnetic fluid with a characteristic size of 1 mm can attain a value of 10 m/s
    corecore