4 research outputs found
Branch Rings, Thinned Rings, Tree Enveloping Rings
We develop the theory of ``branch algebras'', which are infinite-dimensional
associative algebras that are isomorphic, up to taking subrings of finite
codimension, to a matrix ring over themselves. The main examples come from
groups acting on trees.
In particular, for every field k we construct a k-algebra K which (1) is
finitely generated and infinite-dimensional, but has only finite-dimensional
quotients;
(2) has a subalgebra of finite codimension, isomorphic to ;
(3) is prime;
(4) has quadratic growth, and therefore Gelfand-Kirillov dimension 2;
(5) is recursively presented;
(6) satisfies no identity;
(7) contains a transcendental, invertible element;
(8) is semiprimitive if k has characteristic ;
(9) is graded if k has characteristic 2;
(10) is primitive if k is a non-algebraic extension of GF(2);
(11) is graded nil and Jacobson radical if k is an algebraic extension of
GF(2).Comment: 35 pages; small changes wrt previous versio