227 research outputs found

    Child universes UV regularization?

    Get PDF
    It is argued that high energy density excitations, responsible for UV divergences in quantum field theories, including quantum gravity, are likely to be the source of child universes which carry them out of the original space time. This decoupling prevents these high UV excitations from having any influence on physical amplitudes. Child universe production could therefore be responsible for UV regularization in quantum field theories which takes into account gravitational effects. Also child universe production in the last stages of black hole evaporation, the prediction of absence of tranplanckian primordial perturbations, connection to the minimum length hypothesis and in particular connection to the maximal curvature hypothesis are discussed.Comment: 6 pages, RevTex, discussion to the maximum curvature hypothesis adde

    Wormholes and Child Universes

    Full text link
    Evidence to the case that classical gravitation provides the clue to make sense out of quantum gravity is presented. The key observation is the existence in classical gravitation of child universe solutions or "almost" solutions, "almost" because of some singularity problems. The difficulties of these child universe solutions due to their generic singularity problems will be very likely be cured by quantum effects, just like for example "almost" instanton solutions are made relevant in gauge theories with breaking of conformal invariance. Some well motivated modifcations of General Relativity where these singularity problems are absent even at the classical level are discussed. High energy density excitations, responsible for UV divergences in quantum field theories, including quantum gravity, are likely to be the source of child universes which carry them out of the original space time. This decoupling could prevent these high UV excitations from having any influence on physical amplitudes. Child universe production could therefore be responsible for UV regularization in quantum field theories which take into account semiclassically gravitational effects. Child universe production in the last stages of black hole evaporation, the prediction of absence of tranplanckian primordial perturbations, connection to the minimum length hypothesis and in particular the connection to the maximal curvature hypothesis are discussed. Some discussion of superexcited states in the case these states are Kaluza Klein excitations is carried out. Finally, the posibility of obtaining "string like" effects from the wormholes associated with the child universes is discussed.Comment: Talk presented at the IWARA 2009 Conference, Maresias, Brazil, October 2009, accepted for publication in the proceedings, World Scientific format, 8 page

    Black Holes and Photons with Entropic Force

    Full text link
    We study entropic force effects on black holes and photons. We find that application of an entropic analysis restricts the radial change ΔR\Delta R of a black hole of radius RHR_{\mathrm{H}}, due to a test particle of a Schwartzchild radius RhR_{h} moving towards the black hole by Δx\Delta x near black body surface, to be given by a relation RHΔR=RhΔx/2R_{\mathrm{H}} \Delta R= R_h \Delta x/2, or {\Delta R}/{\lambdabar_M} = {\Delta x}/{2 \lambdabar_m}. We suggest a new rule regarding entropy changes in different dimensions, \Delta S= 2\pi k D \Delta l /\lambdabar, which unifies Verlinde's conjecture and the black hole entropy formula. We also propose to extend the entropic force idea to massless particles such as a photon. We find that there is an entropic force on a photon of energy EγE_\gamma, with F=GMmγ/R2F=G M m_{\gamma}/R^2, and therefore the photon has an effective gravitational mass mγ=Eγ/c2m_\gamma = E_\gamma/c^2.Comment: 4 Latex pages, no figure

    Towards a Stringy Resolution of the Cosmological Singularity

    Full text link
    We study cosmological solutions to the low-energy effective action of heterotic string theory including possible leading order α\alpha' corrections and a potential for the dilaton. We consider the possibility that including such stringy corrections can resolve the initial cosmological singularity. Since the exact form of these corrections is not known the higher-derivative terms are constructed so that they vanish when the metric is de Sitter spacetime. The constructed terms are compatible with known restrictions from scattering amplitude and string worldsheet beta-function calculations. Analytic and numerical techniques are used to construct a singularity-free cosmological solution. At late times and low-curvatures the metric is asymptotically Minkowski and the dilaton is frozen. In the high-curvature regime the universe enters a de Sitter phase.Comment: 6 pages, 2 Figures; minor revisions; references added; REVTeX 4; version to appear in Phys. Rev.

    Stability of a vacuum nonsingular black hole

    Full text link
    This is the first of series of papers in which we investigate stability of the spherically symmetric space-time with de Sitter center. Geometry, asymptotically Schwarzschild for large rr and asymptotically de Sitter as r0r\to 0, describes a vacuum nonsingular black hole for mmcrm\geq m_{cr} and particle-like self-gravitating structure for m<mcrm < m_{cr} where a critical value mcrm_{cr} depends on the scale of the symmetry restoration to de Sitter group in the origin. In this paper we address the question of stability of a vacuum non-singular black hole with de Sitter center to external perturbations. We specify first two types of geometries with and without changes of topology. Then we derive the general equations for an arbitrary density profile and show that in the whole range of the mass parameter mm objects described by geometries with de Sitter center remain stable under axial perturbations. In the case of the polar perturbations we find criteria of stability and study in detail the case of the density profile ρ(r)=ρ0er3/r02rg\rho(r)=\rho_0 e^{-r^3/r_0^2 r_g} where ρ0\rho_0 is the density of de Sitter vacuum at the center, r0r_0 is de Sitter radius and rgr_g is the Schwarzschild radius.Comment: 18 pages, 8 figures, submitted to "Classical and Quantum Gravity

    Brane Gas Cosmology, M-theory and Little String Theory

    Get PDF
    We generalize the Brane Gas Cosmological Scenario to M-theory degrees of freedom, namely M5M5 and M2M2 branes. Without brane intersections, the Brandenberger Vafa(BV) arguments applied to M-theory degrees of freedom generically predict a large 6 dimensional spacetime. We show that intersections of M5M5 and M2M2 branes can instead lead to a large 4 dimensional spacetime. One dimensional intersections in 11D is related to (2,0) little strings (LST) on NS5 branes in type IIA. The gas regime of membranes in M-theory corresponds to the thermodynamics of LST obtained from holography. We propose a mechanism whereby LST living on the worldvolume of NS5 (M5)-branes wrapping a five dimensional torus, annihilate most efficiently in 3+1 dimensions leading to a large 3+1 dimensional spacetime. We also show that this picture is consistent with the gas approximation in M-theory.Comment: 8 page

    DBI Inflation using a One-Parameter Family of Throat Geometries

    Full text link
    We demonstrate the possibility of examining cosmological signatures in the DBI inflation setup using the BGMPZ solution, a one-parameter family of geometries for the warped throat which interpolate between the Maldacena-Nunez and Klebanov-Strassler solutions. The warp factor is determined numerically and subsequently used to calculate cosmological observables including the scalar and tensor spectral indices, for a sample point in the parameter space. As one moves away from the KS solution for the throat the warp factor is qualitatively different, which leads to a significant change for the observables, but also generically increases the non-Gaussianity of the models. We argue that the different models can potentially be differentiated by current and future experiments.Comment: 17 pages, 10 figures; v2: section 4 expanded, references added; v3: typos fixe

    Gravitational Waves from Neutron Stars with Large Toroidal B-fields

    Full text link
    We show that NS's with large toroidal B-fields tend naturally to evolve into potent gravitational-wave (gw) emitters. The toroidal field B_t tends to distort the NS into a prolate shape, and this magnetic distortion can easily dominate over the oblateness ``frozen into'' the NS crust. An elastic NS with frozen-in B-field of this magnitude is clearly secularly unstable: the wobble angle between the NS's angular momentum J^i and the star's magnetic axis n_B^i grow on a dissipation timescale until J^i and n_B^i are orthogonal. This final orientation is clearly the optimal one for gravitational-wave (gw) emission. The basic cause of the instability is quite general, so we conjecture that the same final state is reached for a realistic NS. Assuming this, we show that for LMXB's with B_t of order 10^{13}G, the spindown from gw's is sufficient to balance the accretion torque--supporting a suggestion by Bildsten. The spindown rates of most millisecond pulsars can also be attributed to gw emission sourced by toroidal B-fields, and both these sources could be observed by LIGO II. While the first-year spindown of a newborn NS is most likely dominated by em processes, reasonable values of B_t and the (external) dipolar field B_d can lead to detectable levels of gw emission, for a newborn NS in our own galaxy.Comment: 7 pages; submitted to PRD; only minor revision

    Toroidal Magnetic Fields in Type II Superconducting Neutron Stars

    Full text link
    We determine constraints on the form of axisymmetric toroidal magnetic fields dictated by hydrostatic balance in a type II superconducting neutron star with a barotropic equation of state. Using Lagrangian perturbation theory, we find the quadrupolar distortions due to such fields for various models of neutron stars with type II superconducting and normal regions. We find that the star becomes prolate and can be sufficiently distorted to display precession with a period of the order of years. We also study the stability of such fields using an energy principle, which allows us to extend the stability criteria established by R. J. Tayler for normal conductors to more general media with magnetic free energy that depends on density and magnetic induction, such as type II superconductors. We also derive the growth rate and instability conditions for a specific instability of type II superconductors, first discussed by P. Muzikar, C. J. Pethick and P. H. Roberts, using a local analysis based on perturbations around a uniform background.Comment: 32 pages, 6 figures; derivations shortened, comments and references added; accepted for publication in MNRA

    Moduli Stabilization in Brane Gas Cosmology with Superpotentials

    Full text link
    In the context of brane gas cosmology in superstring theory, we show why it is impossible to simultaneously stabilize the dilaton and the radion with a general gas of strings (including massless modes) and D-branes. Although this requires invoking a different mechanism to stabilize these moduli fields, we find that the brane gas can still play a crucial role in the early universe in assisting moduli stabilization. We show that a modest energy density of specific types of brane gas can solve the overshoot problem that typically afflicts potentials arising from gaugino condensation.Comment: minor changes to match the journal versio
    corecore