227 research outputs found
Child universes UV regularization?
It is argued that high energy density excitations, responsible for UV
divergences in quantum field theories, including quantum gravity, are likely to
be the source of child universes which carry them out of the original space
time. This decoupling prevents these high UV excitations from having any
influence on physical amplitudes. Child universe production could therefore be
responsible for UV regularization in quantum field theories which takes into
account gravitational effects. Also child universe production in the last
stages of black hole evaporation, the prediction of absence of tranplanckian
primordial perturbations, connection to the minimum length hypothesis and in
particular connection to the maximal curvature hypothesis are discussed.Comment: 6 pages, RevTex, discussion to the maximum curvature hypothesis adde
Wormholes and Child Universes
Evidence to the case that classical gravitation provides the clue to make
sense out of quantum gravity is presented. The key observation is the existence
in classical gravitation of child universe solutions or "almost" solutions,
"almost" because of some singularity problems. The difficulties of these child
universe solutions due to their generic singularity problems will be very
likely be cured by quantum effects, just like for example "almost" instanton
solutions are made relevant in gauge theories with breaking of conformal
invariance. Some well motivated modifcations of General Relativity where these
singularity problems are absent even at the classical level are discussed. High
energy density excitations, responsible for UV divergences in quantum field
theories, including quantum gravity, are likely to be the source of child
universes which carry them out of the original space time. This decoupling
could prevent these high UV excitations from having any influence on physical
amplitudes. Child universe production could therefore be responsible for UV
regularization in quantum field theories which take into account
semiclassically gravitational effects. Child universe production in the last
stages of black hole evaporation, the prediction of absence of tranplanckian
primordial perturbations, connection to the minimum length hypothesis and in
particular the connection to the maximal curvature hypothesis are discussed.
Some discussion of superexcited states in the case these states are Kaluza
Klein excitations is carried out. Finally, the posibility of obtaining "string
like" effects from the wormholes associated with the child universes is
discussed.Comment: Talk presented at the IWARA 2009 Conference, Maresias, Brazil,
October 2009, accepted for publication in the proceedings, World Scientific
format, 8 page
Black Holes and Photons with Entropic Force
We study entropic force effects on black holes and photons. We find that
application of an entropic analysis restricts the radial change of a
black hole of radius , due to a test particle of a
Schwartzchild radius moving towards the black hole by near
black body surface, to be given by a relation , or {\Delta R}/{\lambdabar_M} = {\Delta x}/{2 \lambdabar_m}. We
suggest a new rule regarding entropy changes in different dimensions, \Delta
S= 2\pi k D \Delta l /\lambdabar, which unifies Verlinde's conjecture and the
black hole entropy formula. We also propose to extend the entropic force idea
to massless particles such as a photon. We find that there is an entropic force
on a photon of energy , with , and therefore
the photon has an effective gravitational mass .Comment: 4 Latex pages, no figure
Towards a Stringy Resolution of the Cosmological Singularity
We study cosmological solutions to the low-energy effective action of
heterotic string theory including possible leading order corrections
and a potential for the dilaton. We consider the possibility that including
such stringy corrections can resolve the initial cosmological singularity.
Since the exact form of these corrections is not known the higher-derivative
terms are constructed so that they vanish when the metric is de Sitter
spacetime. The constructed terms are compatible with known restrictions from
scattering amplitude and string worldsheet beta-function calculations. Analytic
and numerical techniques are used to construct a singularity-free cosmological
solution. At late times and low-curvatures the metric is asymptotically
Minkowski and the dilaton is frozen. In the high-curvature regime the universe
enters a de Sitter phase.Comment: 6 pages, 2 Figures; minor revisions; references added; REVTeX 4;
version to appear in Phys. Rev.
Stability of a vacuum nonsingular black hole
This is the first of series of papers in which we investigate stability of
the spherically symmetric space-time with de Sitter center. Geometry,
asymptotically Schwarzschild for large and asymptotically de Sitter as
, describes a vacuum nonsingular black hole for and
particle-like self-gravitating structure for where a critical
value depends on the scale of the symmetry restoration to de Sitter
group in the origin. In this paper we address the question of stability of a
vacuum non-singular black hole with de Sitter center to external perturbations.
We specify first two types of geometries with and without changes of topology.
Then we derive the general equations for an arbitrary density profile and show
that in the whole range of the mass parameter objects described by
geometries with de Sitter center remain stable under axial perturbations. In
the case of the polar perturbations we find criteria of stability and study in
detail the case of the density profile
where is the density of de Sitter vacuum at the center, is de
Sitter radius and is the Schwarzschild radius.Comment: 18 pages, 8 figures, submitted to "Classical and Quantum Gravity
Brane Gas Cosmology, M-theory and Little String Theory
We generalize the Brane Gas Cosmological Scenario to M-theory degrees of
freedom, namely and branes. Without brane intersections, the
Brandenberger Vafa(BV) arguments applied to M-theory degrees of freedom
generically predict a large 6 dimensional spacetime. We show that intersections
of and branes can instead lead to a large 4 dimensional spacetime.
One dimensional intersections in 11D is related to (2,0) little strings (LST)
on NS5 branes in type IIA. The gas regime of membranes in M-theory corresponds
to the thermodynamics of LST obtained from holography. We propose a mechanism
whereby LST living on the worldvolume of NS5 (M5)-branes wrapping a five
dimensional torus, annihilate most efficiently in 3+1 dimensions leading to a
large 3+1 dimensional spacetime. We also show that this picture is consistent
with the gas approximation in M-theory.Comment: 8 page
DBI Inflation using a One-Parameter Family of Throat Geometries
We demonstrate the possibility of examining cosmological signatures in the
DBI inflation setup using the BGMPZ solution, a one-parameter family of
geometries for the warped throat which interpolate between the Maldacena-Nunez
and Klebanov-Strassler solutions. The warp factor is determined numerically and
subsequently used to calculate cosmological observables including the scalar
and tensor spectral indices, for a sample point in the parameter space. As one
moves away from the KS solution for the throat the warp factor is qualitatively
different, which leads to a significant change for the observables, but also
generically increases the non-Gaussianity of the models. We argue that the
different models can potentially be differentiated by current and future
experiments.Comment: 17 pages, 10 figures; v2: section 4 expanded, references added; v3:
typos fixe
Gravitational Waves from Neutron Stars with Large Toroidal B-fields
We show that NS's with large toroidal B-fields tend naturally to evolve into
potent gravitational-wave (gw) emitters. The toroidal field B_t tends to
distort the NS into a prolate shape, and this magnetic distortion can easily
dominate over the oblateness ``frozen into'' the NS crust. An elastic NS with
frozen-in B-field of this magnitude is clearly secularly unstable: the wobble
angle between the NS's angular momentum J^i and the star's magnetic axis n_B^i
grow on a dissipation timescale until J^i and n_B^i are orthogonal. This final
orientation is clearly the optimal one for gravitational-wave (gw) emission.
The basic cause of the instability is quite general, so we conjecture that the
same final state is reached for a realistic NS. Assuming this, we show that for
LMXB's with B_t of order 10^{13}G, the spindown from gw's is sufficient to
balance the accretion torque--supporting a suggestion by Bildsten. The spindown
rates of most millisecond pulsars can also be attributed to gw emission sourced
by toroidal B-fields, and both these sources could be observed by LIGO II.
While the first-year spindown of a newborn NS is most likely dominated by em
processes, reasonable values of B_t and the (external) dipolar field B_d can
lead to detectable levels of gw emission, for a newborn NS in our own galaxy.Comment: 7 pages; submitted to PRD; only minor revision
Toroidal Magnetic Fields in Type II Superconducting Neutron Stars
We determine constraints on the form of axisymmetric toroidal magnetic fields
dictated by hydrostatic balance in a type II superconducting neutron star with
a barotropic equation of state. Using Lagrangian perturbation theory, we find
the quadrupolar distortions due to such fields for various models of neutron
stars with type II superconducting and normal regions. We find that the star
becomes prolate and can be sufficiently distorted to display precession with a
period of the order of years. We also study the stability of such fields using
an energy principle, which allows us to extend the stability criteria
established by R. J. Tayler for normal conductors to more general media with
magnetic free energy that depends on density and magnetic induction, such as
type II superconductors. We also derive the growth rate and instability
conditions for a specific instability of type II superconductors, first
discussed by P. Muzikar, C. J. Pethick and P. H. Roberts, using a local
analysis based on perturbations around a uniform background.Comment: 32 pages, 6 figures; derivations shortened, comments and references
added; accepted for publication in MNRA
Moduli Stabilization in Brane Gas Cosmology with Superpotentials
In the context of brane gas cosmology in superstring theory, we show why it
is impossible to simultaneously stabilize the dilaton and the radion with a
general gas of strings (including massless modes) and D-branes. Although this
requires invoking a different mechanism to stabilize these moduli fields, we
find that the brane gas can still play a crucial role in the early universe in
assisting moduli stabilization. We show that a modest energy density of
specific types of brane gas can solve the overshoot problem that typically
afflicts potentials arising from gaugino condensation.Comment: minor changes to match the journal versio
- …
