192 research outputs found

    Observation of Collective-Emission-Induced Cooling inside an Optical Cavity

    Full text link
    We report the observation of collective-emission-induced, velocity-dependent light forces. One third of a falling sample containing 3 x 10^6 cesium atoms illuminated by a horizontal standing wave is stopped by cooperatively emitting light into a vertically oriented confocal resonator. We observe decelerations up to 1500 m/s^2 and cooling to temperatures as low as 7 uK, well below the free space Doppler limit. The measured forces substantially exceed those predicted for a single two-level atom.Comment: 10 pages, 5 figure

    HRAS is a therapeutic target in malignant chemo-resistant adenomyoepithelioma of the breast

    Get PDF
    Abstract Malignant adenomyoepithelioma (AME) of the breast is an exceptionally rare form of breast cancer, with a significant metastatic potential. Chemotherapy has been used in the management of advanced AME patients, however the majority of treatments are not effective. Recent studies report recurrent mutations in the HRAS Q61 hotspot in small series of AMEs, but there are no preclinical or clinical data showing H-Ras protein as a potential therapeutic target in malignant AMEs. We performed targeted sequencing of tumours’ samples from new series of 13 AMEs, including 9 benign and 4 malignant forms. Samples from the breast tumour and the matched axillary metastasis of one malignant HRAS mutated AME were engrafted and two patient-derived xenografts (PDX) were established that reproduced the typical AME morphology. The metastasis-derived PDX was treated in vivo by different chemotherapies and a combination of MEK and BRAF inhibitors (trametinib and dabrafenib). All malignant AMEs presented a recurrent mutation in the HRAS G13R or G12S hotspot. Mutation of PIK3CA were found in both benign and malignant AMEs, while AKT1 mutations were restricted to benign AMEs. Treatment of the PDX by the MEK inhibitor trametinib, resulted in a marked anti-tumor activity, in contrast to the BRAF inhibitor and the different chemotherapies that were ineffective. Overall, these findings further expand on the genetic features of AMEs and suggest that patients carrying advanced HRAS-mutated AMEs could potentially be treated with MEK inhibitors

    Propofol induces MAPK/ERK cascade dependant expression of cFos and Egr-1 in rat hippocampal slices

    Get PDF
    Background: Propofol is a commonly used intravenous anesthetic agent, which produce rapid induction of and recovery from general anesthesia. Numerous clinical studies reported that propofol can potentially cause amnesia and memory loss in human subjects. The underlying mechanism for this memory loss is unclear but may potentially be related to the induction of memory-associated genes such as c-Fos and Egr-1 by propofol. This study explored the effects of propofol on c-Fos and Egr-1 expression in rat hippocampal slices. Findings: Hippocampal brain slices were exposed to varying concentrations of propofol at multiple time intervals. The transcription of the immediate early genes, c-Fos and Egr-1, was quantified using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). MAPK/ERK inhibitors were used to investigate the mechanism of action. We demonstrate that propofol induced the expression of c-Fos and Egr-1 within 30 and 60 min of exposure time. At 16.8 μM concentration, propofol induced a 110% increase in c-Fos transcription and 90% decrease in the transcription of Egr-1. However, at concentrations above 100 μM, propofol failed to induce expression of c-Fos but did completely inhibit the transcription of Egr-1. Propofol-induced c-Fos and Egr-1 transcription was abolished by inhibitors of RAS, RAF, MEK, ERK and p38-MAPK in the MAPK/ERK cascade. Conclusions: Our study shows that clinically relevant concentrations of propofol induce c-Fos and down regulated Egr-1 expression via an MAPK/ERK mediated pathway. We demonstrated that propofol induces a time and dose dependant transcription of IEGs c-Fos and Egr-1 in rat hippocampal slices. We further demonstrate for the first time that propofol induced IEG expression was mediated via a MAPK/ERK dependant pathway. These novel findings provide a new avenue to investigate transcription-dependant mechanisms and suggest a parallel pathway of action with an unclear role in the activity of general anesthetics

    Combining scanning probe microscopy and x-ray spectroscopy

    Get PDF
    A new versatile tool, combining Shear Force Microscopy and X-Ray Spectroscopy was designed and constructed to obtain simultaneously surface topography and chemical mapping. Using a sharp optical fiber as microscope probe, it is possible to collect locally the visible luminescence of the sample. Results of tests on ZnO and on ZnWO4 thin layers are in perfect agreement with that obtained with other conventional techniques. Twin images obtained by simultaneous acquisition in near field of surface topography and of local visible light emitted by the sample under X-Ray irradiation in synchrotron environment are shown. Replacing the optical fibre by an X-ray capillary, it is possible to collect local X-ray fluorescence of the sample. Preliminary results on Co-Ti sample analysis are presented

    Compactifications and algebraic completions of Limit groups

    Full text link
    In this paper we consider the existence of dense embeddings of Limit groups in locally compact groups generalizing earlier work of Breuillard, Gelander, Souto and Storm [GBSS] where surface groups were considered. Our main results are proved in the context of compact groups and algebraic groups over local fields. In addition we prove a generalization of the classical Baumslag lemma which is a useful tool for generating eventually faithful sequences of homomorphisms. The last section is dedicated to correct a mistake from [BGSS] and to get rid of the even genus assumption.Comment: v2: Substantial changes to sections 7 and 8.2. Typos corrected. References added. v3: Acknowledgement correcte

    Biochemistry Instructors’ Views toward Developing and Assessing Visual Literacy in Their Courses

    Get PDF
    Biochemistry instructors are inundated with various representations from which to choose to depict biochemical phenomena. Because of the immense amount of visual know-how needed to be an expert biochemist in the 21st century, there have been calls for instructors to develop biochemistry students’ visual literacy. However, visual literacy has multiple aspects, and determining which area to develop can be quite daunting. Therefore, the goals of this study were to determine what visual literacy skills biochemistry instructors deem to be most important and how instructors develop and assess visual literacy skills in their biochemistry courses. In order to address these goals, a needs assessment was administered to a national sample of biochemistry faculty at four-year colleges and universities. Based on the results of the survey, a cluster analysis was conducted to group instructors into categories based on how they intended to develop visual literacy in their courses. A misalignment was found between the visual literacy skills that were most important and how instructors developed visual literacy. In addition, the majority of instructors assumed these skills on assessments rather than explicitly testing them. Implications focus on the need for better measures to assess visual literacy skills directly
    corecore