1,793 research outputs found

    Strong color fields and heavy flavor production

    Full text link
    The clustering of color sources provides a natural framework for soft partonic interactions producing strong color fields. We study the consequences of these color fields in the production of heavy flavor and the behavior of the nuclear modification factor.Comment: 11 pages, 7 figures, to appear in Physical Review

    Rapidity long range correlations, parton percolation and color glass condensate

    Full text link
    The similarities between string percolation and Glasma results are emphasized, special attention being paid to rapidity long range correlations, ridge structure and elliptic flow. As the string density of high multiplicity pp collisions at LHC energies has similar value as the corresponding to Au-Au semi-central collisions at RHIC we also expect in pp collisions long rapidity correlations and ridge structure, extended more than 8 units in rapidity.Comment: 3 pages, 3 figures, conference Quark Confinement and the hadron spectrum I

    Elliptic flow at RHIC and LHC in the string percolation approach

    Full text link
    The percolation of strings gives a good description of the RHIC experimental data on the elliptic flow, v2 and predicted a rise on the integrated v2 of the order of 25% at LHC such as it has been experimentally obtained. We show that the dependence of v2 on pT for RHIC and LHC energies is approximately the same as it has been observed, for all the centralities. We show the results for different particles and the dependence of v2 on the centralities and rapidity. Our results are compatible with an small value of the ratio eta/s in the whole energy range such as it was expected in the percolation framework.Comment: 20 pages, 12 figure

    Atomic Processes in Planetary Nebulae and H II Regions

    Full text link
    Spectroscopic studies of Planetary Nebulae (PNe) and H {\sc ii} regions have driven much development in atomic physics. In the last few years the combination of a generation of powerful observatories, the development of ever more sophisticated spectral modeling codes, and large efforts on mass production of high quality atomic data have led to important progress in our understanding of the atomic spectra of such astronomical objects. In this paper I review such progress, including evaluations of atomic data by comparisons with nebular spectra, detection of spectral lines from most iron-peak elements and n-capture elements, observations of hyperfine emission lines and analysis of isotopic abundances, fluorescent processes, and new techniques for diagnosing physical conditions based on recombination spectra. The review is directed toward atomic physicists and spectroscopists trying to establish the current status of the atomic data and models and to know the main standing issues.Comment: 9 pages, 1 figur

    Chemical Abundances from the Continuum

    Full text link
    The calculation of solar absolute fluxes in the near-UV is revisited, discussing in some detail recent updates in theoretical calculations of bound-free opacity from metals. Modest changes in the abundances of elements such as Mg and the iron-peak elements have a significant impact on the atmospheric structure, and therefore self-consistent calculations are necessary. With small adjustments to the solar photospheric composition, we are able to reproduce fairly well the observed solar fluxes between 200 and 270 nm, and between 300 and 420 nm, but find too much absorption in the 270-290 nm window. A comparison between our reference 1D model and a 3D time-dependent hydrodynamical simulation indicates that the continuum flux is only weakly sensitive to 3D effects, with corrections reaching <10% in the near-UV, and <2% in the optical.Comment: 10 pages, 5 figures, to appear in the proceedings of the conference A Stellar Journey, a symposium in celebration of Bengt Gustafsson's 65th birthday, June 23-27, 2008, Uppsal

    Removal of anionic surfactant from aqueous solutions by adsorption onto biochars:characterisation, kinetics, and mechanism

    Get PDF
    Biochar, a waste biomass-derived adsorbent, holds promise for decentralised wastewater treatment. However, limited research exists on its efficacy in adsorbing anionic surfactants in wastewater. To address this, the adsorption of sodium dodecyl sulphate (SDS), a common anionic surfactant, was studied using various biochar types: rice husk biochar (RH-550 and RH-700), wheat straw biochar (WS-550 and WS-700) produced at 550°C and 700°C, wood-based biochar (OB), and activated carbon (AC) as a control. The study investigated the impact of pH (3–9), adsorbent loading (1–10 g/L), adsorbent size (&lt;0.5–2.5 mm), contact time (5–180 min), and initial concentration (50–200 mg/L) on SDS removal. Under optimised conditions (100 mg/L SDS, 4 g/L adsorbent, 1–2 mm particle size, pH 8.3, and 180 min contact time), maximum SDS removals were RH-550 (78%), RH-700 (82.4%), WS-550 (89.5%), WS-700 (90.4%), AC (97%), and OB (88.4%). Among the tested adsorbent materials, WS-550 exhibited the highest SDS adsorption capacity at 66.23 mg/g compared to AC (80.65 mg/g), followed by RH-550 (49.75 mg/g), OB (45.87 mg/g), RH-700 (43.67 mg/g), and WS-700 (42.74 mg/g). SDS adsorption followed a pseudo-second-order kinetic model, indicating chemisorption on the adsorbent surface. The Freundlich isotherm model exhibited a better fit for the experimental data on SDS adsorption using all tested adsorbents except for RH-550. This study showed that biochars produced from agricultural and forestry residues are effective adsorbents for SDS in aqueous solutions and can be a promising sustainable and low-cost material for the treatment of greywater containing anionic surfactants (e.g. handwashing, laundry, kitchen, and bathroom greywaters)

    Formic Acid Ionization and Fragmentation by Multiphoton Absorption

    Get PDF
    Multiphoton absorption is an intensity dependent nonlinear effect related to the excitation of virtual intermediate states. In the present work, multiphoton ionization and dissociation of the formic acid molecule (HCOOH) by the interaction with photons from 532 Nd: YAG laser at different intensities are discussed, using different carrier gases. The induced fragmentation-ionization patterns show up to 17 fragments and dissociation channels are proposed. Some evidence of small clusters formation and conformational memory from the ratio of the detected products, CO+ and CO2+, on the light of the available results, it is possible to conclude that they arise from trans and cis formic acid. Our results are compared with those obtained in other laboratories under different experimental conditions, some of them show only partial agreement and differences are discussed. Following the Keldysh description it is possible, from our experimental parameters, characterize our results, in the multiphoton absorption regime

    Elliptic flow: pseudorapidity and number of participants dependence

    Full text link
    We discuss the elliptic flow dependence on pseudorapidity and number of participating nucleons in the framework of string percolation, and argue that the geometry of the initial overlap region of interaction, projected in the impact parameter plane, determines the experimentally measured azimuthal asymmetries. We found good agreement with data.Comment: 7 pages, 2 figure
    corecore