780 research outputs found
Ground-based stratospheric O3 and HNO3 measurements at Thule, Greenland: An intercomparison with Aura MLS observations
In response to the need for improving our understanding of the evolution and the interannual variability of the winter Arctic stratosphere, in January 2009 a Ground-Based Millimeter-wave Spectrometer (GBMS) was installed at the Network for the Detection of Atmospheric Composition Change (NDACC) site in Thule (76.5° N, 68.8° W), Greenland. In this work, stratospheric GBMS O3 and HNO3 vertical profiles obtained from Thule during the winters 2010 (HNO3 only), 2011 and 2012 are characterized and intercompared with co-located measurements of the Aura Microwave Limb Sounder (MLS) experiment. Using a recently developed algorithm based on Optimal Estimation, we find that the GBMS O3 retrievals show good sensitivity (> 80%) to atmospheric variations between ~ 17 and ~ 50 km, where their 1σ uncertainty is estimated to be the larger of ~ 11% or 0.2 ppmv. Similarly, HNO3 profiles can be considered for scientific use between ~ 17 and ~ 45 km altitude, with a 1σ uncertainty that amounts to the larger of 15% or 0.2 ppbv. Comparisons with Aura MLS version 3.3 observations show that, on average, GBMS O3 mixing ratios are biased negatively with respect to MLS throughout the stratosphere, with differences ranging between ~ 0.3 ppmv (8%) and 0.9 ppmv (18%) in the 17–50 km vertical range. GBMS HNO3 values display instead a positive bias with respect to MLS up to 26 km, reaching a maximum of ~ 1 ppbv (10%) near the mixing ratio profile peak. O3 and HNO3 values from the two datasets prove to be well correlated at all altitudes, although their correlations worsen at the lower end of the altitude ranges considered. Column contents of GBMS and MLS O3 (from 20 km upwards) and HNO3 (from 17 km upwards) correlate very well and indicate that GBMS measurements can provide valuable estimates of column interannual and seasonal variations for these compounds
Revising the retrieval technique of a long-term stratospheric HNO3 data set: from a constrained matrix inversion to the optimal estimation algorithm
The Ground-Based Millimeter-wave Spectrometer
(GBMS) was designed and built at the State University
of New York at Stony Brook in the early 1990s and since
then has carried out many measurement campaigns of stratospheric
O3, HNO3, CO and N2O at polar and mid-latitudes.
Its HNO3 data set shed light on HNO3 annual cycles over
the Antarctic continent and contributed to the validation of
both generations of the satellite-based JPL Microwave Limb
Sounder (MLS). Following the increasing need for long-term
data sets of stratospheric constituents, we resolved to establish
a long-term GMBS observation site at the Arctic station
of Thule (76.5 N, 68.8 W), Greenland, beginning in January
2009, in order to track the long- and short-term interactions
between the changing climate and the seasonal processes
tied to the ozone depletion phenomenon. Furthermore,
we updated the retrieval algorithm adapting the Optimal
Estimation (OE) method to GBMS spectral data in order
to conform to the standard of the Network for the Detection
of Atmospheric Composition Change (NDACC) microwave
group, and to provide our retrievals with a set of averaging
kernels that allow more straightforward comparisons with
other data sets. The new OE algorithm was applied to GBMS
HNO3 data sets from 1993 South Pole observations to date,
in order to produce HNO3 version 2 (v2) profiles. A sample
of results obtained at Antarctic latitudes in fall and winter
and at mid-latitudes is shown here. In most conditions, v2
inversions show a sensitivity (i.e., sum of column elements
of the averaging kernel matrix) of 100±20% from 20 to
45 km altitude, with somewhat worse (better) sensitivity in
the Antarctic winter lower (upper) stratosphere. The 1 uncertainty
on HNO3 v2 mixing ratio vertical profiles depends on altitude and is estimated at 15% or 0.3 ppbv, whichever
is larger. Comparisons of v2 with former (v1) GBMS HNO3
vertical profiles, obtained employing the constrained matrix
inversion method, show that v1 and v2 profiles are overall
consistent. The main difference is at the HNO3 mixing ratio
maximum in the 20–25 km altitude range, which is smaller
in v2 than v1 profiles by up to 2 ppbv at mid-latitudes and
during the Antarctic fall. This difference suggests a better
agreement of GBMS HNO3 v2 profiles with both UARS/ and
EOS Aura/MLS HNO3 data than previous v1 profiles
Intercomparison between Aura MLS and ground-based millimeter-wave observations of stratospheric O3 and HNO3 from Thule (76.5° N, 68.7° W)
The Ground-Based Millimeter-wave Spectrometer (GBMS) measures rotational emission spectra of middle atmospheric trace gases, with a spectral window of 600 MHz tunable between approximately 230 and 280 GHz and a resolution of up to 65 kHz. It was designed and built at the State University of New York at Stony Brook in the early 90’s and since then has been regularly upgraded and operated at a variety of sites in both hemispheres, at polar and mid-latitudes.
In view of a growing need for long-term data sets of stratospheric constituents, in January 2009 we resolved to establish a long-term GBMS observation site at the Arctic station of Thule Air Base (76.5°N, 68.8°W), Greenland, in order to track the long- and short-term interactions between the changing climate and the seasonal processes tied to the ozone depletion phenomenon. Since then three winter campaigns were carried out from Thule during the period January-March 2009, 2010 and 2011. Observations of O3, HNO3, CO and N2O were performed, mostly on a daily basis, except during periods characterized by poor weather conditions.
In this study we compare GBMS stratospheric O3 and HNO3 measurements obtained during these three winter periods at Thule with colocated satellite observations from the Aura Microwave Limb Sounder (MLS) experiment. The Version 3.3 Aura MLS O3 and HNO3 data sets have a resolution of about 2.5 km and 3-4 km, respectively, in the stratosphere. The MLS precisions range from 0.1 to 0.6 ppmv for O3 and about 0.6-0.7 ppbv for HNO3 throughout the stratosphere. Based on preliminary comparisons with correlative data sets and on results obtained for v2.2, systematic uncertainties are estimated to lead to HNO3 measurements biases that vary between ±0.5 and ±2 ppbv and multiplicative errors of ±5 –15% throughout most of the stratosphere. Similarly, a systematic uncertainty of the order of 5-10% has been assessed for O3 data.
As for the GBMS, the O3 pure rotational transition line at 276.923 GHz is observed with a ~1.5-hour integration, while the weaker HNO3 spectrum, represented by a cluster of superimposed emission lines centered at 269.1 GHz, needs about 4 hours of integration. Taking advantage of the dependence of the line broadening on atmospheric pressure, inversion techniques allow the retrieval of vertical profiles from approximately 15 to 50 km. In the past, GBMS O3 and HNO3 spectra were deconvolved using a Chahine-Twomey (C-T) and an iterative constrained Matrix Inversion (MI) technique, respectively. More recently, the GBMS retrieval algorithm has been updated to an Optimal Estimation Method (OEM) in order to conform to the standard of the NDACC microwave group, and to easily provide retrievals with a set of averaging kernels that grants more straightforward comparisons with other data sets. The nominal vertical resolution of the retrieved profiles (defined as the FWHM of averaging kernels) is ~8 km for O3 and ~ 12 km for HNO3, although the inversion technique locates the maximum of the mixing ratio profile of both species with a much better accuracy (i.e., ~ ±1 km). The 1σ uncertainty of O3 and HNO3 mixing ratio vertical profiles depends on altitude and is estimated at ~15% or 0.3 ppbv, whichever is larger.
Each GBMS profile is compared to the closest MLS profile, with coincidence criteria of ±10° longitude, ±2.5° latitude and ±12 h. In order to avoid of severely compromising the comparison between GBMS and Aura MLS observations due to the much higher resolution of the satellite-derived data sets, we ‘convolved’ the MLS profiles using the GBMS averaging kernels before directly comparing the two data sets. For both species a fairly good agreement between MLS and GBMS profiles is observed, with the GBMS showing, however, a ~10-15% low bias at the mixing ratio peak
Hydrogeology and geochemistry of the sulfur karst springs at Santa Cesarea Terme (Apulia, southern Italy)
This work describes the geochemical and hydrogeological characteristics of Santa Cesarea Terme, an active sulfuric acid speleogenetic system located along the Adriatic coastline (Apulia, southern Italy). It represents a very peculiar site, where rising thermal and acidic waters mix with seawater creating undersaturated solutions with respect to CaCO3, able to dissolve and corrode limestone and create caves. The Santa Cesarea Terme system is composed of four caves: Fetida, Sulfurea, Gattulla, and Solfatara. Hypogene morphologies and abundant deposits of native sulfur (especially in Gattulla Cave) and sulfate minerals are present in these caves. Fetida and Gattulla caves were investigated primarily because they are easily accessible throughout the whole year through artificial entrances, the other caves being reachable only from the sea. Geochemical analysis of water, monitoring of cave atmosphere, and measurement of the stable isotopes of S, O, and H helped to identify the main processes occurring in this complex cave system. In particular, changes in Ba2+ and Sr2+ concentration allowed for the identification of two main domains of influence, characterized by marine and rising acidic waters
CCD BV and 2MASS photometric study of the open cluster NGC 1513
We present CCD BV and JHK 2MASS photometric data for the open cluster
NGC 1513. We observed 609 stars in the direction of the cluster up to a
limiting magnitude of mag. The star count method shows that the
centre of the cluster lies at ,
and its angular size is arcmin.
The optical and near-infrared two-colour diagrams reveal the colour excesses in
the direction of the cluster as , and
mag. These results are consistent with normal
interstellar extinction values. Optical and near-infrared Zero Age
Main-Sequences (ZAMS) provided an average distance modulus of
mag, which can be translated into a distance of
pc. Finally, using Padova isochrones we determined the metallicity
and age of the cluster as ( dex) and
, respectively.Comment: 15 pages, 12 figures and 4 tables, accepted for publication in
Astrophysics & Space Scienc
Multi-band optical micro-variability observations of BL Lacertae
We have observed BL Lacertae in the B, R and I bands for 2 nights in July,
1999, and 3 nights in July, 2001. The observations resulted in almost evenly
sampled light curves, with an average sampling interval of ~5 min. The source
is significantly variable in all bands. On average, the variability amplitude
increases from ~5% in the I band, to ~5.5% in the R and ~6.5% in the B band
light curves. The rising and decaying time scales are comparable within each
band, but they increase from the B, to R and I band light curves. The optical
power spectrum shows a red noise component with a slope of ~ -2.
Cross-correlation analysis shows that in most cases the delay between the
variations in the B and I band light curves is less than ~ 0.4 hrs. The
cross-correlation functions are asymmetric, implying complex delays of the I
band variations with respect to the B band variations. Furthermore, in one case
we find that the I band variations are significantly delayed (by ~0.2 hrs) with
respect to the B band variations. We also detect significant spectral
variations: the spectrum becomes steeper as the flux increases, and the
flattest spectral index corresponds to the maximum B band flux. Our results
imply that the fast, intra-night variations of the source correspond to
perturbations of different regions in the jet which cause localized injections
of relativistic particles on time scales much sorter that the average sampling
interval of the light curves. The variations are controlled by the cooling and
light crossing time scales, which are probably comparable.Comment: Accepted for publication in A&
Evolution of temperature, O3, CO, and N2O profiles during the exceptional 2009 Arctic major stratospheric warming as observed by lidar and mm-wave spectroscopy at Thule (76.5°N, 68.8°W), Greenland.
The 2009 Arctic sudden stratospheric warming (SSW) was the most intense event of this kind ever observed. Unique ground-based measurements of middle atmospheric profiles for temperature, O3, CO, and N2O obtained at Thule (76.5°N, 68.8°W), Greenland, in the period January – early March are used to show the evolution of the 2009 SSW in the region of its maximum intensity. The first sign of the SSW was detected at θ~2000 K on January 19, when a rapid decrease in CO mixing ratio took place. The first evidence of a temperature increase was observed at the same level on 22 January, the earliest date on which lidar measurements reached above ~50 km. The warming propagated from the upper to the lower stratosphere in 7 days and the record maximum temperature of 289 K was observed between 1300 and 1500 K potential temperature on 22 January. A strong vortex splitting was associated with the SSW. Stratospheric backward trajectories indicate that airmasses arriving to Thule during the warming peak underwent a rapid compression and an intense adiabatic warming of up to 50 K. The rapid advection of air from the extra-tropics was also occasionally observed to produce elevated values of N2O mixing ratio. Starting from mid-February the temperature profile and the N2O mixing ratio returned to the pre-warming values in the mid and upper stratosphere, indicating the reformation of the vortex at these levels. In late winter, vertical descent from starting altitudes of ~60 km is estimated from CO profiles to be 0.25±0.05 km/day
Essential requirement for sphingosine kinase activity in eNOS-dependent NO release and vasorelaxation
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid that acts both as an extracellular ligand for endothelial differentiation gene receptor family and as an intracellular second messenger. Cellular levels of S1P are low and tightly regulated by sphingosine kinase (SPK). Recent studies have suggested that eNOS pathway may function as a downstream target for the biological effects of receptor-mediated S1P. Here we have studied the possible interplay between intracellular SIP generation and the eNOS activation pathway. S1P causes an endothelium-dependent vasorelaxation in rat aorta that is PTX sensitive, inhibited by L-NAME that involves eNOS phosphorylation, and mainly dependent on hsp90. When rat aorta rings were incubated with the SPK inhibitor DL-threo-dihydrosphingosine (DTD), there was a concentration-dependent reduction of Ach-induced vasorelaxation, implying a consistent contribution of sphingolipid pathway through intracellular sphingosine release and phosphorylation. Co-immunoprecipitation experiments consistently showed increased association of hsp90 with eNOS after exposure of cells to S1P as well to BK or calcium ionophore A-23187. Interestingly, as opposite to A-23187, BK and S1P effect were significantly inhibited by pretreatment with the SPK inhibitor DTD. In conclusion, our data demonstrate that an interplay exists among eNOS, hsp90, and intracellularly generated S1P where eNOS coupling to hsp90 is a major determinant for NO release as confirmed by our functional and molecular studies
Millimeter wave spectroscopic measurements of stratospheric and mesospheric constituents over the Italian Alps: stratospheric ozone
Measurements of rotational lines emitted by middle atmospheric trace gases have been carried out from the Alpine
station of Testa Grigia (45.9°N, 7.7°E, elev. 3500 m) by means of a Ground-Based Millimeter-wave Spectrometer
(GBMS). Observations of species such as O3, HNO3, CO, N2O, HCN, and HDO took place during 4 winter periods,
from February 2004 to March 2007, for a total of 116 days of measurements grouped in about 18 field campaigns.
By studying the pressure-broadened shape of emission lines the vertical distribution of the observed constituents
is retrieved within an altitude range of ∼17-75 km, constrained by the 600 MHz pass band and the 65 kHz
spectral resolution of the back-end spectrometer. This work discusses the behavior of stratospheric O3 during the
entire period of operation at Testa Grigia. Mid-latitude O3 columnar content as estimated using GBMS measurements
can vary by large amounts over a period of very few days, with the largest variations observed in December
2005, February 2006, and March 2006, confirming that the northern winter of 2005-2006 was characterized by a
particularly intense planetary wave activity. The largest rapid variation from maximum to minimum O3 column values
over Testa Grigia took place in December 2006 and reached a relative value of 72% with respect to the average
column content for that period. During most GBMS observation times much of the variability is concentrated
in the column below 20 km, with tropospheric weather systems and advection of tropical tropospheric air into the
lower stratosphere over Testa Grigia having a large impact on the observed variations in column contents. Nonetheless,
a wide variability is also found in middle stratospheric GBMS O3 measurements, as expected for mid-latitude
ozone. We find that O3 mixing ratios at ∼32 km are very well correlated with the solar illumination experienced by
air masses over the previous ∼15 days, showing that already at 32 km altitude ozone photochemistry dominates over
transport processes. The correlation of lower stratospheric ozone concentrations with potential vorticity as an indicator
of transport is instead not as clear-cut, due to very complex mixing processes that characterize stratospheric
air at mid-latitudes. Correlations of O3 over Testa Grigia with stratospheric tracers such as N2O and HCN, also observed
by means of the GBMS, are planned for the future, in order to better characterize lower stratospheric dynamics
and therefore lower stratospheric ozone concentrations at mid-latitudes
- …