716 research outputs found

    Magnetically generated spin-orbit coupling for ultracold atoms

    Full text link
    We present a new technique for producing two- and three-dimensional Rashba-type spin-orbit couplings for ultracold atoms without involving light. The method relies on a sequence of pulsed inhomogeneous magnetic fields imprinting suitable phase gradients on the atoms. For sufficiently short pulse durations, the time-averaged Hamiltonian well approximates the Rashba Hamiltonian. Higher order corrections to the energy spectrum are calculated exactly for spin-1/2 and perturbatively for higher spins. The pulse sequence does not modify the form of rotationally symmetric atom-atom interactions. Finally, we present a straightforward implementation of this pulse sequence on an atom chip

    Synthetic clock transitions via continuous dynamical decoupling

    Get PDF
    Decoherence of quantum systems due to uncontrolled fluctuations of the environment presents fundamental obstacles in quantum science. `Clock' transitions which are insensitive to such fluctuations are used to improve coherence, however, they are not present in all systems or for arbitrary system parameters. Here, we create a trio of synthetic clock transitions using continuous dynamical decoupling in a spin-1 Bose-Einstein condensate in which we observe a reduction of sensitivity to magnetic field noise of up to four orders of magnitude; this work complements the parallel work by Anderson et al. (submitted, 2017). In addition, using a concatenated scheme, we demonstrate suppression of sensitivity to fluctuations in our control fields. These field-insensitive states represent an ideal foundation for the next generation of cold atom experiments focused on fragile many-body phases relevant to quantum magnetism, artificial gauge fields, and topological matter.Comment: 8 pages, 4 figures, Supplemental material

    Perpetual emulation threshold of PT-symmetric Hamiltonians

    Full text link
    We describe a technique to emulate a two-level \PT-symmetric spin Hamiltonian, replete with gain and loss, using only the unitary dynamics of a larger quantum system. This we achieve by embedding the two-level system in question in a subspace of a four-level Hamiltonian. Using an \textit{amplitude recycling} scheme that couples the levels exterior to the \PT-symmetric subspace, we show that it is possible to emulate the desired behaviour of the \PT-symmetric Hamiltonian without depleting the exterior, reservoir levels. We are thus able to extend the emulation time indefinitely, despite the non-unitary \PT dynamics. We propose a realistic experimental implementation using dynamically decoupled magnetic sublevels of ultracold atoms.Comment: 15 pages, 8 figure

    Fourier transform spectroscopy of a spin-orbit coupled Bose gas

    Full text link
    We describe a Fourier transform spectroscopy technique for directly measuring band structures, and apply it to a spin-1 spin-orbit coupled Bose-Einstein condensate. In our technique, we suddenly change the Hamiltonian of the system by adding a spin-orbit coupling interaction and measure populations in different spin states during the subsequent unitary evolution. We then reconstruct the spin and momentum resolved spectrum from the peak frequencies of the Fourier transformed populations. In addition, by periodically modulating the Hamiltonian, we tune the spin-orbit coupling strength and use our spectroscopy technique to probe the resulting dispersion relation. The frequency resolution of our method is limited only by the coherent evolution timescale of the Hamiltonian and can otherwise be applied to any system, for example, to measure the band structure of atoms in optical lattice potentials
    • …
    corecore