1,441 research outputs found
Medium Modification of the Jet Properties
In the case that a dense medium is created in a heavy ions collision,
high-E_t jets are expected to be broadened by medium-modified gluon emission.
This broadening is directly related, through geometry, to the energy loss
measured in inclusive high-p_t particle suppression. We present here the
modifications of jet observables due to the presence of a medium for the case
of azimuthal jet energy distributions and k_t-differential multiplicities
inside the jets.Comment: 4 pages, 3 postscript figures. Proceedings for Quark Matter 200
Restriction on the energy and luminosity of e+e- storage rings due to beamstrahlung
The role of beamstrahlung in high-energy e+e- storage-ring colliders (SRCs)
is examined. Particle loss due to the emission of single energetic
beamstrahlung photons is shown to impose a fundamental limit on SRC
luminosities at energies 2E_0 >~ 140 GeV for head-on collisions and 2E_0 >~ 40
GeV for crab-waist collisions. With beamstrahlung taken into account, we
explore the viability of SRCs in the E_0=240-500 GeV range, which is of
interest in the precision study of the Higgs boson. At 2E_0=240 GeV, SRCs are
found to be competitive with linear colliders; however, at 2E_0=400-500 GeV,
the attainable SRC luminosity would be a factor 15-25 smaller than desired.Comment: Latex, 5 pages. v2 differs only by minor changes is abstract and
introduction, one reference is added. v3 corresponds to the paper published
in PR
Jet multiplicities as the QGP thermometer
It is proposed to use the energy behavior of mean multiplicities of jets
propagating in a nuclear medium as the thermometer of this medium during the
collision phases. The qualitative effects are demonstrated in the framework of
the fixed coupling QCD with account of jet quenching.Comment: Modify version of hep-ph/0509344, 3 figure
Hadron multiplicity in pp and AA collisions at LHC from the Color Glass Condensate
We provide quantitative predictions for the rapidity, centrality and energy
dependencies of inclusive charged-hadron productions for the forthcoming LHC
measurements in nucleus-nucleus collisions based on the idea of gluon
saturation in the color-glass condensate framework. Our formulation gives very
good descriptions of the first data from the LHC for the inclusive
charged-hadron production in proton-proton collisions, the deep inelastic
scattering at HERA at small Bjorken-x, and the hadron multiplicities in
nucleus-nucleus collisions at RHIC.Comment: 7 pages, 8 figures; v3: minor changes, one reference added, results
unchanged, the version to appear in Phys. Rev.
Laser cooling of electron beams for linear colliders
A novel method of electron beam cooling is considered which can be used for
linear colliders. The electron beam is cooled during collision with focused
powerful laser pulse. With reasonable laser parameters (laser flash energy
about 10 J) one can decrease transverse beam emittances by a factor about 10
per one stage. The ultimate transverse emittances are much below those
achievable by other methods. Beam depolarization during cooling is about 5--15
% for one stage. This method is especially useful for photon colliders and
opens new possibilities for e+e- colliders.Comment: 4 pages, Latex, v2 corresponds to the PRL paper with erratum (in
1998) include
Non-Abelian Energy Loss at Finite Opacity
A systematic expansion in opacity, , is used to clarify the
non-linear behavior of induced gluon radiation in quark-gluon plasmas. The
inclusive differential gluon distribution is calculated up to second order in
opacity and compared to the zeroth order (factorization) limit. The opacity
expansion makes it possible to take finite kinematic constraints into account
that suppress jet quenching in nuclear collisions below RHIC (
AGeV) energies.Comment: 4 pages (revtex) with 3 eps figures, submitted to PR
Young Measures Generated by Ideal Incompressible Fluid Flows
In their seminal paper "Oscillations and concentrations in weak solutions of
the incompressible fluid equations", R. DiPerna and A. Majda introduced the
notion of measure-valued solution for the incompressible Euler equations in
order to capture complex phenomena present in limits of approximate solutions,
such as persistence of oscillation and development of concentrations.
Furthermore, they gave several explicit examples exhibiting such phenomena. In
this paper we show that any measure-valued solution can be generated by a
sequence of exact weak solutions. In particular this gives rise to a very
large, arguably too large, set of weak solutions of the incompressible Euler
equations.Comment: 35 pages. Final revised version. To appear in Arch. Ration. Mech.
Ana
Thermal conductance of Andreev interferometers
We calculate the thermal conductance of diffusive Andreev
interferometers, which are hybrid loops with one superconducting arm and one
normal-metal arm. The presence of the superconductor suppresses ; however,
unlike a conventional superconductor, does not vanish as the
temperature , but saturates at a finite value that depends on the
resistance of the normal-superconducting interfaces, and their distance from
the path of the temperature gradient. The reduction of is determined
primarily by the suppression of the density of states in the proximity-coupled
normal metal along the path of the temperature gradient. is also a
strongly nonlinear function of the thermal current, as found in recent
experiments.Comment: 5 pages, 4 figure
Ultimate parameters of the photon collider at the ILC
At linear colliders, the e+e- luminosity is limited by beam-collision
effects, which determine the required emittances of beams in damping rings
(DRs). While in gamma-gamma collisions at the photon collider, these effects
are absent, and so smaller emittances are desirable. In present damping rings
designs, nominal DR parameters correspond to those required for e+e-
collisions. In this note, I would like to stress once again that as soon as we
plan the photon-collider mode of ILC operation, the damping-ring emittances are
dictated by the photon-collider requirements--namely, they should be as small
as possible. This can be achieved by adding more wigglers to the DRs; the
incremental cost is easily justified by a considerable potential improvement of
the gamma-gamma luminosity. No expert analysis exists as of yet, but it seems
realistic to obtain a factor five increase of the gamma-gamma luminosity
compared to the ``nominal'' DR design.Comment: Talk at LCWS06, Bangalore, India, March 2006, to be published in
Indian Journal of Physics, 5 pp, Latex, 1 .eps figur
Efficient computation of matched solutions of the Kapchinskij-Vladimirskij envelope equations for periodic focusing lattices
A new iterative method is developed to numerically calculate the periodic,
matched beam envelope solution of the coupled Kapchinskij-Vladimirskij (KV)
equations describing the transverse evolution of a beam in a periodic, linear
focusing lattice of arbitrary complexity. Implementation of the method is
straightforward. It is highly convergent and can be applied to all usual
parameterizations of the matched envelope solutions. The method is applicable
to all classes of linear focusing lattices without skew couplings, and also
applies to all physically achievable system parameters -- including where the
matched beam envelope is strongly unstable. Example applications are presented
for periodic solenoidal and quadrupole focusing lattices. Convergence
properties are summarized over a wide range of system parameters.Comment: 20 pages, 5 figures, Mathematica source code provide
- …