10 research outputs found
Neural stem cells induce the formation of their physical niche during organogenesis.
Most organs rely on stem cells to maintain homeostasis during post-embryonic life. Typically, stem cells of independent lineages work coordinately within mature organs to ensure proper ratios of cell types. Little is known, however, on how these different stem cells locate to forming organs during development. Here we show that neuromasts of the posterior lateral line in medaka are composed of two independent life-long lineages with different embryonic origins. Clonal analysis and 4D imaging revealed a hierarchical organisation with instructing and responding roles: an inner, neural lineage induces the formation of an outer, border cell lineage (nBC) from the skin epithelium. Our results demonstrate that the neural lineage is necessary and sufficient to generate nBCs highlighting self-organisation principles at the level of the entire embryo. We hypothesise that induction of surrounding tissues plays a major role during the establishment of vertebrate stem cell niches
Supplementary Material for: Intrinsic versus Extrinsic Aging: A Histopathological, Morphometric and Immunohistochemical Study of Estrogen Receptor β and Androgen Receptor
Skin is a target organ of sex steroids which play important roles in skin health and disease. The aim of this study is to investigate the expression of estrogen receptor β (ERβ) and androgen receptor (AR) in human skin from different age groups for a better understanding of the hormonal regulation of skin aging. Using standard immunohistochemical techniques, biopsies of sun-unprotected and sun-protected skin were taken from 60 normal subjects. Sun-protected skin showed significantly higher immunoreactivity for ERβ and AR compared to sun-unprotected skin of all age groups. Significantly higher ERβ H score and percent of expression were associated with the 20-35 years age group compared to the groups that were 35-50 years and >50 years old (p < 0.02, p = 0.03, respectively) in sun-unprotected and sun-protected skin (p < 0.001, p = 0.01, respectively). AR H score showed a negative correlation with age (p = 0.04) with no significant difference in immunoreactivity in different age groups, either in sun-unprotected or sun-protected skin. There was also a significant correlation between ERβ H score and epidermal thickness in sun-unprotected (p = 0.04) and sun-protected skin (p = 0.04) in studied subjects regardless of age. The same relationships did not reach significance with AR expression. However, a significant positive correlation was detected between H scores and percent of expression of ERβ and AR in sun-unprotected (p = 0.01, p = 0.02, respectively) and sun-protected skin (p = 0.005, p = 0.02, respectively) regardless of age. In conclusion, both ERβ and AR decline gradually with intrinsic and extrinsic aging. This decline is more obvious with extrinsic aging. Further large-scaled studies are recommended to expand, validate and translate current findings to clinically significant, diagnostic and therapeutic applications. Molecular studies to investigate the probable ligand-independent action of both receptors are warranted. In addition, their gene expression patterns and associated signaling and metabolic pathways can also be tackled to provide a basis for further interventions in pathological processes that involve their dysregulation