155 research outputs found

    The cool wake around 4C 34.16 as seen by XMM-Newton

    Full text link
    We present XMM-Newton observations of the wake-radiogalaxy system 4C34.16, which shows a cool and dense wake trailing behind 4C34.16's host galaxy. A comparison with numerical simulations is enlightening, as they demonstrate that the wake is produced mainly by ram pressure stripping during the galactic motion though the surrounding cluster. The mass of the wake is a substantial fraction of the mass of an elliptical galaxy's X-ray halo. This observational fact supports a wake formation scenario similar to the one demonstrated numerically by Acreman et al (2003): the host galaxy of 4C34.16 has fallen into its cluster, and is currently crossing its central regions. A substantial fraction of its X-ray halo has been stripped by ram pressure, and remains behind to form the galaxy wake.Comment: 9 pages, 6 figures, accepted for publication in MNRA

    Active Galaxies and Cluster Gas

    Full text link
    Two lines of evidence indicate that active galaxies, principally radio galaxies, have heated the diffuse hot gas in clusters. The first is the general need for additional heating to explain the steepness of the X-ray luminosity--temperature relation in clusters, the second is to solve the cooling flow problem in cluster cores. The inner core of many clusters is radiating energy as X-rays on a timescale much shorter than its likely age. Although the temperature in this region drops by a factor of about 3 from that of the surrounding gas, little evidence is found for gas much cooler than that. Some form of heating appears to be taking place, probably by energy transported outward from the central accreting black hole or radio source. How that energy heats the gas depends on poorly understood transport properties (conductivity and viscosity) of the intracluster medium. Viscous heating is discussed as a possibility. Such heating processes have consequences for the truncation of the luminosity function of massive galaxies.Comment: 14 pages, 16 fig, Feb 2004 talk for Phil Trans Roy So

    Simulating the Hot X-ray Emitting Gas in Elliptical Galaxies

    Get PDF
    We study the chemo-dynamical evolution of elliptical galaxies and their hot X-ray emitting gas using high-resolution cosmological simulations. Our Tree N-body/SPH code includes a self-consistent treatment of radiative cooling, star formation, supernovae feedback, and chemical enrichment. We present a series of LCDM cosmological simulations which trace the spatial and temporal evolution of heavy element abundance patterns in both the stellar and gas components of galaxies. X-ray spectra of the hot gas are constructed via the use of the vmekal plasma model, and analysed using XSPEC with the XMM EPN response function. Simulation end-products are quantitatively compared with the observational data in both the X-ray and optical regime. We find that radiative cooling is important to interpret the observed X-ray luminosity, temperature, and metallicity of the interstellar medium of elliptical galaxies. However, this cooled gas also leads to excessive star formation at low redshift, and therefore results in underlying galactic stellar populations which are too blue with respect to observations.Comment: 6 pages, 3 figures, to appear in the proceedings of "The IGM/Galaxy Connection - The Distribution of Baryons at z=0", ed. M. Putman & J. Rosenberg; High resolution version is available at http://astronomy.swin.edu.au/staff/dkawata/research/papers.htm

    Chandra Observations of Gas Stripping in the Elliptical Galaxy NGC 4552 in the Virgo Cluster

    Get PDF
    We use a 54.4 ks Chandra observation to study ram-pressure stripping in NGC4552 (M89), an elliptical galaxy in the Virgo Cluster. Chandra images in the 0.5-2 keV band show a sharp leading edge in the surface brightness 3.1 kpc north of the galaxy center, a cool (kT =0.51^{+0.09}_{-0.06} keV) tail with mean density n_e ~5.4 +/- 1.7 x 10^{-3} cm^{-3} extending ~10 kpc to the south of the galaxy, and two 3-4 kpc horns of emission extending southward away from the leading edge. These are all features characteristic of supersonic ram-pressure stripping of galaxy gas, due to NGC4552's motion through the surrounding Virgo ICM. Fitting the surface brightness profile and spectra across the leading edge, we find the galaxy gas inside the edge is cooler (kT = 0.43^{+0.03}_{-0.02} keV) and denser (n_e ~ 0.010 cm^{-3}) than the surrounding Virgo ICM (kT = 2.2^{+0.7}_{-0.4} keV and n_e = 3.0 +/- 0.3 x 10^{-4} cm^{-3}). The resulting pressure ratio between the free-streaming ICM and cluster gas at the stagnation point is ~7.6^{+3.4}_{-2.0} for galaxy gas metallicities of 0.5^{+0.5}_{-0.3} Zsolar, which suggests that NGC4552 is moving supersonically through the cluster with a velocity v ~ 1680^{+390}_{-220} km/s (Mach 2.2^{+0.5}_{-0.3}) at an angle xi ~ 35 +/- 7 degrees towards us with respect to the plane of the sky.Comment: 31 pages, 12 figures, ApJ, in press; paper split into 2 parts, Paper I(sec 1-3) here, added figs and discussion to conform to published version; Paper II (sec. 4) in astro-ph/060440

    XMM-Newton Optical Monitor observations of LMC X-3

    Get PDF
    We study the optical counterpart of the black-hole X-ray binary LMC X-3, by using XMM-Newton/OM observations carried out during a low-hard X-ray state. We derive a better constraint for the temperature, mass and radius of the companion star, and we show that the star is likely to be a ~ B5 subgiant filling its Roche lobe. Taking into account the effect of X-ray irradiation, we suggest a value f_M = (1.5 +/- 0.3) M_sun for the mass function in this system, lower than previously thought; we provide a more accurate lower limit to the mass of the compact object.Comment: accepted for publication in the special XMM-Newton issue of A&A

    Chandra Observation of the Cluster Environment of a WAT Radio Source in Abell 1446

    Full text link
    Wide-angle tail (WAT) radio sources are often found in the centers of galaxy clusters where intracluster medium (ICM) ram pressure may bend the lobes into their characteristic C-shape. We examine the low redshift (z=0.1035) cluster Abell 1446, host to the WAT radio source 1159+583. The cluster exhibits possible evidence for a small-scale cluster-subcluster merger as a cause of the WAT radio source morphology. This evidence includes the presence of temperature and pressure substructure along the line that bisects the WAT as well as a possible wake of stripped interstellar material or a disrupted cool core to the southeast of the host galaxy. A filament to the north may represent cool, infalling gas that's contributing to the WAT bending while spectroscopically determined redshifts of member galaxies may indicate some component of a merger occurring along the line-of-sight. The WAT model of high flow velocity and low lobe density is examined as another scenario for the bending of 1159+583. It has been argued that such a model would allow the ram pressure due to the galaxy's slow motion through the ICM to shape the WAT source. A temperature profile shows that the cluster is isothermal (kT= 4.0 keV) in a series of annuli reaching a radius of 400 kpc. There is no evidence of an ongoing cooling flow. Temperature, abundance, pressure, density, and mass profiles, as well as two-dimensional maps of temperature and pressure are presented.Comment: 40 AASTeX pages including 15 postscript figures; accepted for publication in Ap

    On the use of polymer gels for assessing the total geometrical accuracy in clinical Gamma Knife radiosurgery applications

    Get PDF
    The nearly tissue equivalent MRI properties and the unique ability of registering 3D dose distributions of polymer gels were exploited to assess the total geometrical accuracy in clinical Gamma Knife applications, taking into account the combined effect of the unit’s mechanical accuracy, dose delivery precision and the geometrical distortions inherent in MR images used for irradiation planning. Comparison between planned and experimental data suggests that the MR-related distortions due to susceptibility effects dominate the total clinical geometrical accuracy which was found within 1 mm. The dosimetric effect of the observed sub-millimetre uncertainties on single shot GK irradiation plans was assessed using the target percentage coverage criterion, and a considerable target dose underestimation was found

    A wide angle tail radio galaxy in the COSMOS field: evidence for cluster formation

    Get PDF
    We have identified a complex galaxy cluster system in the COSMOS field via a wide angle tail (WAT) radio galaxy consistent with the idea that WAT galaxies can be used as tracers of clusters. The WAT galaxy, CWAT-01, is coincident with an elliptical galaxy resolved in the HST-ACS image. Using the COSMOS multiwavelength data set, we derive the radio properties of CWAT-01 and use the optical and X-ray data to investigate its host environment. The cluster hosting CWAT-01 is part of a larger assembly consisting of a minimum of four X-ray luminous clusters within ~2 Mpc distance. We apply hydrodynamical models that combine ram pressure and buoyancy forces on CWAT-01. These models explain the shape of the radio jets only if the galaxy's velocity relative to the intra-cluster medium (ICM) is in the range of about 300-550 km/s which is higher than expected for brightest cluster galaxies (BCGs) in relaxed systems. This indicates that the CWAT-01 host cluster is not relaxed, but is possibly dynamically young. We argue that such a velocity could have been induced through subcluster merger within the CWAT-01 parent cluster and/or cluster-cluster interactions. Our results strongly indicate that we are witnessing the formation of a large cluster from an assembly of multiple clusters, consistent with the hierarchical scenario of structure formation. We estimate the total mass of the final cluster to be approximately 20% of the mass of the Coma cluster.Comment: 18 pages, 13 figures; accepted for publication in ApJS, COSMOS special issue; added color figure (Fig. 13) which was previously unavailabl
    • 

    corecore