1,307 research outputs found

    Nonlinear magneto-optical rotation in optically thick media

    Full text link
    Nonlinear magneto-optical rotation is a sensitive technique for measuring magnetic fields. Here, the shot-noise-limited magnetometric sensitivity is analyzed for the case of optically-thick media and high light power, which has been the subject of recent experimental and theoretical investigations.Comment: 7 pages, 4 figure

    Unusually large polarizabilities and "new" atomic states in Ba

    Full text link
    Electric polarizabilities of four low-J even-parity states and three low-J odd-parity states of atomic barium in the range 35,60035,600 to $36,000\ cmcm^{-1}areinvestigated.Thestatesofinterestareexcited(inanatomicbeam)viaanintermediateoddparitystatewithasequenceoftwolaserpulses.TheoddparitystatescanbeexcitedduetotheStarkinducedmixingwithevenparitystates.Thepolarizabilitiesaremeasuredviadirectspectroscopyonthesecondstagetransition.Severalstateshavetensorandscalarpolarizabilitiesthatexceedthevaluesthatmightbeexpectedfromtheknownenergylevelsofbariumbymorethantwoordersofmagnitude.TwooftheStarkinducedtransitionscannotbeidentifiedfromtheknownenergyspectrumofbarium.Theobservationssuggesttheexistenceofasyetunidentifiedoddparityenergystates,whoseenergiesandangularmomentaaredeterminedinthepresentexperiment.Atentativeidentificationofthesestatesas[Xe] are investigated. The states of interest are excited (in an atomic beam) via an intermediate odd-parity state with a sequence of two laser pulses. The odd-parity states can be excited due to the Stark-induced mixing with even-parity states. The polarizabilities are measured via direct spectroscopy on the second-stage transition. Several states have tensor and scalar polarizabilities that exceed the values that might be expected from the known energy levels of barium by more than two orders of magnitude. Two of the Stark-induced transitions cannot be identified from the known energy spectrum of barium. The observations suggest the existence of as yet unidentified odd-parity energy states, whose energies and angular momenta are determined in the present experiment. A tentative identification of these states as [Xe]6s8p ^3P_{0,2}$ is suggested.Comment: 29 pages, 12 figure

    Exercise Induces Peripheral Muscle But Not Cardiac Adaptations After Stroke: A Randomized Controlled Pilot Trial

    Get PDF
    Objective To explore the physiological factors affecting exercise-induced changes in peak oxygen consumption and function poststroke. Design Single-center, single-blind, randomized controlled pilot trial. Setting Community stroke services. Participants Adults (N=40; age>50y; independent with/without stick) with stroke (diagnosed >6mo previously) were recruited from 117 eligible participants. Twenty participants were randomized to the intervention group and 20 to the control group. No dropouts or adverse events were reported. Interventions Intervention group: 19-week (3times/wk) progressive mixed (aerobic/strength/balance/flexibility) community group exercise program. Control group: Matched duration home stretching program. Main Outcome Measures (1) Pre- and postintervention: maximal cardiopulmonary exercise testing with noninvasive (bioreactance) cardiac output measurements; and (2) functional outcome measures: 6-minute walk test; timed Up and Go test, and Berg Balance Scale. Results Exercise improved peak oxygen consumption (18±5 to 21±5mL/(kg⋅min); P<.01) and peak arterial-venous oxygen difference (9.2±2.7 to 11.4±2.9mL of O2/100mL of blood; P<.01), but did not alter cardiac output (17.2±4 to 17.7±4.2L/min; P=.44) or cardiac power output (4.8±1.3 to 5.0±1.35W; P=.45). A significant relation existed between change in peak oxygen consumption and change in peak arterial-venous oxygen difference (r=.507; P<.05), but not with cardiac output. Change in peak oxygen consumption did not strongly correlate with change in function. Conclusions Exercise induced peripheral muscle, but not cardiac output, adaptations after stroke. Implications for stroke clinical care should be explored further in a broader cohort

    Balance and coordination after viewing stereoscopic 3D television.

    Get PDF
    Manufacturers and the media have raised the possibility that viewing stereoscopic 3D television (S3D TV) may cause temporary disruption to balance and visuomotor coordination. We looked for evidence of such effects in a laboratory-based study. Four hundred and thirty-three people aged 4-82 years old carried out tests of balance and coordination before and after viewing an 80 min movie in either conventional 2D or stereoscopic 3D, while wearing two triaxial accelerometers. Accelerometry produced little evidence of any change in body motion associated with S3D TV. We found no evidence that viewing the movie in S3D causes a detectable impairment in balance or in visuomotor coordination

    Nonlinear magneto-optical rotation with frequency-modulated light in the geophysical field range

    Full text link
    Recent work investigating resonant nonlinear magneto-optical rotation (NMOR) related to long-lived (\tau\ts{rel} \sim 1 {\rm s}) ground-state atomic coherences has demonstrated potential magnetometric sensitivities exceeding 1011G/Hz10^{-11} {\rm G/\sqrt{Hz}} for small (1μG\lesssim 1 {\rm \mu G}) magnetic fields. In the present work, NMOR using frequency-modulated light (FM NMOR) is studied in the regime where the longitudinal magnetic field is in the geophysical range (500mG\sim 500 {\rm mG}), of particular interest for many applications. In this regime a splitting of the FM NMOR resonance due to the nonlinear Zeeman effect is observed. At sufficiently high light intensities, there is also a splitting of the FM NMOR resonances due to ac Stark shifts induced by the optical field, as well as evidence of alignment-to-orientation conversion type processes. The consequences of these effects for FM-NMOR-based atomic magnetometry in the geophysical field range are considered.Comment: 8 pages, 8 figure

    A Study of the Scintillation Induced by Alpha Particles and Gamma Rays in Liquid Xenon in an Electric Field

    Full text link
    Scintillation produced in liquid xenon by alpha particles and gamma rays has been studied as a function of applied electric field. For back scattered gamma rays with energy of about 200 keV, the number of scintillation photons was found to decrease by 64+/-2% with increasing field strength. Consequently, the pulse shape discrimination power between alpha particles and gamma rays is found to reduce with increasing field, but remaining non-zero at higher fields.Comment: 15 pages, 12 figures, accepted by Nuclear Instruments and Methods in Physics Research

    Material Profile Influences in Bulk-Heterojunctions

    Get PDF
    The morphology in mixed bulk-heterojunction films are compared using three different quantitative measurement techniques. We compare the vertical composition changes using high-angle annular dark-field scanning transmission electron microscopy with electron tomography and neutron and x-ray reflectometry. The three measurement techniques yield qualitatively comparable vertical concentration measurements. The presence of a metal cathode during thermal annealing is observed to alter the fullerene concentration throughout the thickness of the film for all measurements. However, the absolute vertical concentration of fullerene is quantitatively different for the three measurements. The origin of the quantitative measurement differences is discussed

    Selective addressing of high-rank atomic polarization moments

    Get PDF
    We describe a method of selective generation and study of polarization moments of up to the highest rank κ=2F\kappa=2F possible for a quantum state with total angular momentum FF. The technique is based on nonlinear magneto-optical rotation with frequency-modulated light. Various polarization moments are distinguished by the periodicity of light-polarization rotation induced by the atoms during Larmor precession and exhibit distinct light-intensity and frequency dependences. We apply the method to study polarization moments of 87^{87}Rb atoms contained in a vapor cell with antirelaxation coating. Distinct ultra-narrow (1-Hz wide) resonances, corresponding to different multipoles, appear in the magnetic-field dependence of the optical rotation. The use of the highest-multipole resonances has important applications in quantum and nonlinear optics and in magnetometry.Comment: 5 pages, 6 figure
    corecore