203 research outputs found
Ion temperature gradient turbulence in helical and axisymmetric RFP plasmas
Turbulence induced by the ion temperature gradient (ITG) is investigated in
the helical and axisymmetric plasma states of a reversed field pinch device by
means of gyrokinetic calculations. The two magnetic configurations are
systematically compared, both linearly and nonlinearly, in order to evaluate
the impact of the geometry on the instability and its ensuing transport, as
well as on the production of zonal flows. Despite its enhanced confinement, the
high-current helical state demonstrates a lower ITG stability threshold
compared to the axisymmetric state, and ITG turbulence is expected to become an
important contributor to the total heat transport.Comment: 8 pages, to appear in Phys. Plasma
Microturbulence studies in RFX-mod
Present-days Reversed Field Pinches (RFPs) are characterized by quasi-laminar
magnetic configurations in their core, whose boundaries feature sharp internal
transport barriers, in analogy with tokamaks and stellarators. The abatement of
magnetic chaos leads to the reduction of associated particle and heat transport
along wandering field lines. At the same time, the growth of steep temperature
gradients may trigger drift microinstabilities. In this work we summarize the
work recently done in the RFP RFX-mod in order to assess the existence and the
impact upon transport of such electrostatic and electromagnetic
microinstabilities as Ion Temperature Gradient (ITG), Trapped Electron Modes
(TEM) and microtearing modes.Comment: Work presented at the 2010 Varenna workshop "Theory of Fusion
Plasmas". To appear in Journal of Physics Conference Serie
On the mutual effect of ion temperature gradient instabilities and impurity peaking in the reversed field pinch
The presence of impurities is considered in gyrokinetic calculations of ion
temperature gradient (ITG) instabilities and turbulence in the reversed field
pinch device RFX-mod. This device usually exhibits hollow Carbon/Oxygen
profiles, peaked in the outer core region. We describe the role of the
impurities in ITG mode destabilization, and analyze whether ITG turbulence is
compatible with their experimental gradients.Comment: 19 pages, 9 figures, accepted for publication in Plasma Phys.
Control. Fusio
MHD equilibrium and stability of tokamaks and RFP systems with 3D helical cores
Bifurcated magnetohydrodynamic (MHD) equilibrium states are computed for ITER hybrid scenario and RFX-mod SHAx configurations with very flat or reversed core magnetic shear conditions. In the ITER studies, the minimum inverse rotational transform qmin is near unity, while for RFX-mod it is 1/8. Two equilibrium states are obtained: one is axisymmetric, the other displays a 3D helical core. In tokamak devices, the structure resembles a saturated ideal MHD internal kink mode. In the reversed-field pinch, the structure is seven-fold toroidally periodic. The equilibrium magnetic field spectrum in the Boozer coordinate frame is calculated in both the ITER and RFX-mod configurations and the implications are discussed. The RFX-mod equilibria are strongly unstable to external ideal MHD kink modes, which become stabilized with a closely fitting conducting shell when the equilibrium state has a weak reversed core shear. It is marginally unstable with a monotonic q-profile. Unstable modes are driven by the Ohmic current, with pressure and Pfirsch–Schl¨uter currents having a very weak effect. The external kink mode spectrum is dominated by coupled , and , Fourier components, which revert to , and , terms with a conducting wall in proximity to the plasma–vacuum interface
Magentohydrodynamic Properties of Nominally Axisymmetric Systems with 3D Helical Core
Magnetohydrodynamic equilibrium states with a three-dimensional helical core are computed to model the MAST spherical tokamak and the RFX-mod reversed field pinch. The boundary is fixed as axisymmetric. The MAST equilibrium state has the appearance of an internal kink mode and is obtained under conditions of weak reversed central shear. The RFX-mod equilibrium state has seven-fold periodicity. An ideal magnetohydrodynamic stability analysis reveals that the reversal of the core magnetic shear can stabilize a periodicity-breaking mode that is dominantly m/n = 1/8 strongly coupled to a m/n = 2/15 component, as long as the central rotational transform does not exceed the value of 8
- …