358 research outputs found

    Stochastic Approach to Enantiomeric Excess Amplification and Chiral Symmetry Breaking

    Full text link
    Stochastic aspects of chemical reaction models related to the Soai reactions as well as to the homochirality in life are studied analytically and numerically by the use of the master equation and random walk model. For systems with a recycling process, a unique final probability distribution is obtained by means of detailed balance conditions. With a nonlinear autocatalysis the distribution has a double-peak structure, indicating the chiral symmetry breaking. This problem is further analyzed by examining eigenvalues and eigenfunctions of the master equation. In the case without recycling process, final probability distributions depend on the initial conditions. In the nonlinear autocatalytic case, time-evolution starting from a complete achiral state leads to a final distribution which differs from that deduced from the nonzero recycling result. This is due to the absence of the detailed balance, and a directed random walk model is shown to give the correct final profile. When the nonlinear autocatalysis is sufficiently strong and the initial state is achiral, the final probability distribution has a double-peak structure, related to the enantiomeric excess amplification. It is argued that with autocatalyses and a very small but nonzero spontaneous production, a single mother scenario could be a main mechanism to produce the homochirality.Comment: 25 pages, 6 figure

    Chiral Crystal Growth under Grinding

    Full text link
    To study the establishment of homochirality observed in the crystal growth experiment of chiral molecules from a solution under grinding, we extend the lattice gas model of crystal growth as follows. A lattice site can be occupied by a chiral molecule in R or S form, or can be empty. Molecules form homoclusters by nearest neighbor bonds. They change their chirality if they are isolated monomers in the solution. Grinding is incorporated by cutting and shafling the system randomly. It is shown that Ostwald ripening without grinding is extremely slow to select chirality, if possible. Grinding alone also cannot achieve chirality selection. For the accomplishment of homochirality, we need an enhanced chirality change on crystalline surface. With this "autocatalytic effect" and the recycling of monomers due to rinding, an exponential increase of crystal enantiomeric excess to homochiral state is realized.Comment: 10 pages, 5 figure

    Order and Frustration in Chiral Liquid Crystals

    Full text link
    This paper reviews the complex ordered structures induced by chirality in liquid crystals. In general, chirality favors a twist in the orientation of liquid-crystal molecules. In some cases, as in the cholesteric phase, this favored twist can be achieved without any defects. More often, the favored twist competes with applied electric or magnetic fields or with geometric constraints, leading to frustration. In response to this frustration, the system develops ordered structures with periodic arrays of defects. The simplest example of such a structure is the lattice of domains and domain walls in a cholesteric phase under a magnetic field. More complex examples include defect structures formed in two-dimensional films of chiral liquid crystals. The same considerations of chirality and defects apply to three-dimensional structures, such as the twist-grain-boundary and moire phases.Comment: 39 pages, RevTeX, 14 included eps figure

    Fluctuation Induced Homochirality

    Full text link
    We propose a new mechanism for the achievment of homochirality in life without any autocatalytic production process. Our model consists of a spontaneous production together with a recycling cross inhibition in a closed system. It is shown that although the rate equations for this system predict no chiral symmetry breaking, the stochastic master equation predicts complete homochirality. This is because the fluctuation induced by the discreteness of population numbers of participating molecules plays essential roles. This fluctuation conspires with the recyling cross inhibition to realize the homochirality.Comment: 13 pages, 6 figure

    DNA barcode assessment and population structure of aphidophagous hoverfly <i>Sphaerophoria scripta</i>:Implications for conservation biological control

    Get PDF
    With the advent of integrated pest management, the conservation of indigenous populations of natural enemies of pest species has become a relevant practice, necessitating the accurate identification of beneficial species and the inspection of evolutionary mechanisms affecting the long-time persistence of their populations. The long hoverfly,Sphaerophoria scripta, represents one of the most potent aphidophagous control agents due to a worldwide distribution and a favorable constellation of biological traits. Therefore, we assessed five EuropeanS. scriptapopulations by combining molecular (cytochromecoxidase subunit I-COI, internal transcribed spacer 2-ITS2, and allozyme loci) and morphological (wing size and shape) characters.COIsequences retrieved in this study were conjointly analyzed with BOLD/GenBank sequences of the otherSphaerophoriaspecies to evaluate whetherCOIpossessed a sufficient diagnostic value as a DNA barcode marker to consistently delimit allospecific individuals. Additionally, the aforementioned characters were used to inspect the population structure ofS. scriptain Europe using methods based on individual- and population-based genetic differences, as well as geometric morphometrics of wing traits. The results indicate numerous sharedCOIhaplotypes among differentSphaerophoriaspecies, thus disqualifying this marker from being an adequate barcoding region in this genus. Conversely, the analyses of population structuring revealed high population connectivity across Europe, therefore indicating strong tolerance ofS. scriptato environmental heterogeneity. The results imply a multilocus approach as the next step in molecular identification of differentSphaerophoriaspecies, while confirming the status ofS. scriptaas a powerful biocontrol agent of economically relevant aphid pests

    Acetic Acid Bacteria: Physiology and Carbon Sources Oxidation

    Get PDF
    Acetic acid bacteria (AAB) are obligately aerobic bacteria within the family Acetobacteraceae, widespread in sugary, acidic and alcoholic niches. They are known for their ability to partially oxidise a variety of carbohydrates and to release the corresponding metabolites (aldehydes, ketones and organic acids) into the media. Since a long time they are used to perform specific oxidation reactions through processes called “oxidative fermentations”, especially in vinegar production. In the last decades physiology of AAB have been widely studied because of their role in food production, where they act as beneficial or spoiling organisms, and in biotechnological industry, where their oxidation machinery is exploited to produce a number of compounds such as l-ascorbic acid, dihydroxyacetone, gluconic acid and cellulose. The present review aims to provide an overview of AAB physiology focusing carbon sources oxidation and main products of their metabolism

    Influenza at the animal–human interface: a review of the literature for virological evidence of human infection with swine or avian influenza viruses other than A(H5N1)

    Get PDF
    Factors that trigger human infection with animal influenza virus progressing into a pandemic are poorly understood. Within a project developing an evidence-based risk assessment framework for influenza viruses in animals, we conducted a review of the literature for evidence of human infection with animal influenza viruses by diagnostic methods used. The review covering Medline, Embase, SciSearch and CabAbstracts yielded 6,955 articles, of which we retained 89; for influenza A(H5N1) and A(H7N9), the official case counts of the World Health Organization were used. An additional 30 studies were included by scanning the reference lists. Here, we present the findings for confirmed infections with virological evidence. We found reports of 1,419 naturally infected human cases, of which 648 were associated with avian influenza virus (AIV) A(H5N1), 375 with other AIV subtypes, and 396 with swine influenza virus (SIV). Human cases naturally infected with AIV spanned haemagglutinin subtypes H5, H6, H7, H9 and H10. SIV cases were associated with endemic SIV of H1 and H3 subtype descending from North American and Eurasian SIV lineages and various reassortants thereof. Direct exposure to birds or swine was the most likely source of infection for the cases with available information on exposure
    corecore