13 research outputs found

    Excitability of Aβ sensory neurons is altered in an animal model of peripheral neuropathy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Causes of neuropathic pain following nerve injury remain unclear, limiting the development of mechanism-based therapeutic approaches. Animal models have provided some directions, but little is known about the specific sensory neurons that undergo changes in such a way as to induce and maintain activation of sensory pain pathways. Our previous studies implicated changes in the Aβ, normally non-nociceptive neurons in activating spinal nociceptive neurons in a cuff-induced animal model of neuropathic pain and the present study was directed specifically at determining any change in excitability of these neurons. Thus, the present study aimed at recording intracellularly from Aβ-fiber dorsal root ganglion (DRG) neurons and determining excitability of the peripheral receptive field, of the cell body and of the dorsal roots.</p> <p>Methods</p> <p>A peripheral neuropathy was induced in Sprague Dawley rats by inserting two thin polyethylene cuffs around the right sciatic nerve. All animals were confirmed to exhibit tactile hypersensitivity to von Frey filaments three weeks later, before the acute electrophysiological experiments. Under stable intracellular recording conditions neurons were classified functionally on the basis of their response to natural activation of their peripheral receptive field. In addition, conduction velocity of the dorsal roots, configuration of the action potential and rate of adaptation to stimulation were also criteria for classification. Excitability was measured as the threshold to activation of the peripheral receptive field, the response to intracellular injection of depolarizing current into the soma and the response to electrical stimulation of the dorsal roots.</p> <p>Results</p> <p>In control animals mechanical thresholds of all neurons were within normal ranges. Aβ DRG neurons in neuropathic rats demonstrated a mean mechanical threshold to receptive field stimulation that were significantly lower than in control rats, a prolonged discharge following this stimulation, a decreased activation threshold and a greater response to depolarizing current injection into the soma, as well as a longer refractory interval and delayed response to paired pulse electrical stimulation of the dorsal roots.</p> <p>Conclusions</p> <p>The present study has demonstrated changes in functionally classified Aβ low threshold and high threshold DRG neurons in a nerve intact animal model of peripheral neuropathy that demonstrates nociceptive responses to normally innocuous cutaneous stimuli, much the same as is observed in humans with neuropathic pain. We demonstrate further that the peripheral receptive fields of these neurons are more excitable, as are the somata. However, the dorsal roots exhibit a decrease in excitability. Thus, if these neurons participate in neuropathic pain this differential change in excitability may have implications in the peripheral drive that induces central sensitization, at least in animal models of peripheral neuropathic pain, and Aβ sensory neurons may thus contribute to allodynia and spontaneous pain following peripheral nerve injury in humans.</p

    Accurate and reproducible enumeration of T-, B-, and NK lymphocytes using the BD FACSLyric 10-color system: A multisite clinical evaluation.

    No full text
    Clinical flow cytometry is a reliable methodology for whole blood cell phenotyping for different applications. The BD FACSLyric™ system comprises a flow cytometer available in different optical configurations, BD FACSuite™ Clinical software, and optional BD FACS™ Universal Loader. BD FACSuite Clinical software used with BD™ FC Beads and BD CS&T Beads enable universal setup for performance QC, instrument control, data acquisition/storage, online/offline data analysis, and instrument standardization. BD Biosciences sponsored the clinical evaluation of the BD FACSLyric 10-color configuration at seven clinical sites using delinked and de-identified blood specimens from HIV-infected and uninfected subjects to enumerate T-, B-, and NK-lymphocytes with the BD Multitest™ reagents (BD Multitest IMK kit and BD Multitest 6-color TBNK). Samples were analyzed on the BD FACSLyric system with BD FACSuite Clinical software, and on the BD FACSCanto™ II system with BD FACSCanto clinical software and BD FACS 7-Color Setup beads. For equivalency between methods, data (n = 362) were analyzed with Deming regression for absolute count and percentage of lymphocytes. Results gave R2 ≥0.98, with slope values ≥0.96, and slope ranges between 0.90-1.05. The percent (%) bias values were <10% for T- and NK cells and <15% for B- cells. The between-site (n = 4) total precision was tested for 5 days (2 runs/day), and gave %coefficient of variation below 10% for absolute cell counts. The stability claims were confirmed (n = 186) for the two BD Multitest reagents. The reference intervals were re-established in male and female adults (n = 134). The analysis by gender showed statistically significant differences for CD3+ and CD4+ T-cell counts and %CD4. In summary, the BD FACSLyric and the BD FACSCanto II systems generated comparable measurements of T-, B-, and NK-cells using BD Multitest assays

    Mononeuropathies induites par la chirurgie : de l’anatomie à la prévention

    No full text
    corecore