77 research outputs found
Orbital selectivity of the kink in the dispersion of Sr2RuO4
We present detailed energy dispersions near the Fermi level on the monolayer
perovskite ruthenate Sr2RuO4, determined by high-resolution angle-resolved
photoemission spectroscopy. An orbital selectivity of the kink in the
dispersion of Sr2RuO4 has been found: A kink for the Ru 4d_xy orbital is
clearly observed, but not for the Ru 4d_yz and 4d_zx ones. The result provides
insight into the origin of the kink.Comment: 5 pages, 4 figures. Accepted for publication in Phys. Rev.
Observation of a Highly Spin Polarized Topological Surface State in GeBiTe
Spin polarization of a topological surface state for GeBiTe, the
newly discovered three-dimensional topological insulator, has been studied by
means of the state of the art spin- and angle-resolved photoemission
spectroscopy. It has been revealed that the disorder in the crystal has a minor
effect on the surface state spin polarization and it exceeds 75% near the Dirac
point in the bulk energy gap region (180 meV). This new finding for
GeBiTe promises not only to realize a highly spin polarized surface
isolated transport but to add new functionality to its thermoelectric and
thermomagnetic properties.Comment: 5 pages, 4 figure
High-energy scale revival and giant kink in the dispersion of a cuprate superconductor
In the present photoemission study of a cuprate superconductor
Bi1.74Pb0.38Sr1.88CuO6+delta, we discovered a large scale dispersion of the
lowest band, which unexpectedly follows the band structure calculation very
well. The incoherent nature of the spectra suggests that the hopping-dominated
dispersion occurs possibly with the assistance of local spin correlations. A
giant kink in the dispersion is observed, and the complete self-energy
containing all interaction information is extracted for a doped cuprate in the
low energy region. These results recovered significant missing pieces in our
current understanding of the electronic structure of cuprates.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Lett. on May 21, 200
Bulk and surface-sensitive high-resolution photoemission study of Mott-Hubbard systems SrVO and CaVO
We study the electronic structure of Mott-Hubbard systems SrVO and
CaVO with bulk and surface-sensitive high-resolution photoemission
spectroscopy (PES), using a VUV laser, synchrotron radiation and a discharge
lamp ( = 7 - 21 eV). A systematic suppression of the density of states
(DOS) within 0.2 eV of the Fermi level () is found on decreasing
photon energy i.e. on increasing bulk sensitivity. The coherent band in
SrVO and CaVO is shown to consist of surface and bulk derived
features, separated in energy. The stronger distortion on surface of CaVO
compared to SrVO leads to higher surface metallicity in the coherent DOS
at , consistent with recent theory.Comment: 4 pages 5 figures (including 2 auxiliary figures); A complete
analysis of the spectra based on the surface and bulk analysis shows in
auxiliary figures Fig. A1 and A
Fermi-surface reconstruction involving two Van Hove singularities across the antiferromagnetic transition in BaFe2As2
We report an angle-resolved photoemission study of BaFe2As2, a parent
compound of iron-based superconductors. Low-energy tunable excitation photons
have allowed the first observation of a saddle-point singularity at the Z
point, as well as the Gamma point. With antiferromagnetic ordering, both of
these two van Hove singularities come down below the Fermi energy, leading to a
topological change in the innermost Fermi surface around the kz axis from
cylindrical to tear-shaped, as expected from first-principles calculation.
These singularities may provide an additional instability for the Fermi surface
of the superconductors derived from BaFe2As2.Comment: 14 pages, 4 figures, 1 tabl
Photoemission and x-ray absorption study of MgC_(1-x)Ni_3
We investigated electronic structure of MgC_(1-x)Ni_3 with photoemission and
x-ray absorption spectroscopy. Both results show that overall band structure is
in reasonable agreement with band structure calculations including the
existence of von Hove singularity (vHs)near E_F. However, we find that the
sharp vHs peak theoretically predicted near the E_F is substantially
suppressed. As for the Ni core level and absorption spectrum, there exist the
satellites of Ni 2p which have a little larger energy separation and reduced
intensity compared to the case of Ni-metal. These facts indicate that
correlation effects among Ni 3d electrons may be important to understand
various physical properties.Comment: 12 pages, 4 figure
Eliashberg-type equations for correlated superconductors
The derivation of the Eliashberg -- type equations for a superconductor with
strong correlations and electron--phonon interaction has been presented. The
proper account of short range Coulomb interactions results in a strongly
anisotropic equations. Possible symmetries of the order parameter include s, p
and d wave. We found the carrier concentration dependence of the coupling
constants corresponding to these symmetries. At low hole doping the d-wave
component is the largest one.Comment: RevTeX, 18 pages, 5 ps figures added at the end of source file, to be
published in Phys.Rev. B, contact: [email protected]
Doping Dependence of the Electronic Structure of Ba_{1-x}K_{x}BiO_{3} Studied by X-Ray Absorption Spectroscopy
We have performed x-ray absorption spectroscopy (XAS) and x-ray photoemission
spectroscopy (XPS) studies of single crystal Ba_{1-x}K_{x}BiO_{3} (BKBO)
covering the whole composition range . Several features in
the oxygen 1\textit{s} core XAS spectra show systematic changes with .
Spectral weight around the absorption threshold increases with hole doping and
shows a finite jump between and 0.40, which signals the
metal-insulator transition. We have compared the obtained results with
band-structure calculations. Comparison with the XAS results of
BaPb_{1-x}Bi_{x}O_{3} has revealed quite different doping dependences between
BKBO and BPBO. We have also observed systematic core-level shifts in the XPS
spectra as well as in the XAS threshold as functions of , which can be
attributed to a chemical potential shift accompanying the hole doping. The
observed chemical potential shift is found to be slower than that predicted by
the rigid band model based on the band-structure calculations.Comment: 8 pages, 8 figures include
- …