207 research outputs found

    On Unitarity of Massive Gravity in Three Dimensions

    Full text link
    We examine a unitarity of a particular higher-derivative extension of general relativity in three space-time dimensions, which has been recently shown to be equivalent to the Pauli-Fierz massive gravity at the linearized approximation level, and explore a possibility of generalizing the model to higher space-time dimensions. We find that the model in three dimensions is indeed unitary in the tree-level, but the corresponding model in higher dimensions is not so due to the appearance of non-unitary massless spin-2 modes.Comment: 10 pages, references adde

    Renormalizability of Massive Gravity in Three Dimensions

    Full text link
    We discuss renormalizability of a recently established, massive gravity theory with particular higher derivative terms in three space-time dimensions. It is shown that this massive gravity is certainly renormalizable as well as unitary, so it gives us a physically interesting toy model of perturbative quantum gravity in three dimensions.Comment: 13 pages, no figure

    Extra gauge symmetries in BHT gravity

    Full text link
    We study the canonical structure of the Bergshoeff-Hohm-Townsend massive gravity, linearized around a maximally symmetric background. At the critical point in the space of parameters, defined by Λ0/m2=1\Lambda_0/m^2=-1, we discover an extra gauge symmetry, which reflects the existence of the partially massless mode. The number of the Lagrangian degrees of freedom is found to be 1. We show that the canonical structure of the theory at the critical point is unstable under linearization.Comment: LATEX, 12 page

    Bending AdS Waves with New Massive Gravity

    Get PDF
    We study AdS-waves in the three-dimensional new theory of massive gravity recently proposed by Bergshoeff, Hohm, and Townsend. The general configuration of this type is derived and shown to exhibit different branches, with different asymptotic behaviors. In particular, for the special fine tuning m2=±1/(2l2)m^2=\pm1/(2l^2), solutions with logarithmic fall-off arise, while in the range m2>1/(2l2)m^2>-1/(2l^2), spacetimes with Schrodinger isometry group are admitted as solutions. Solutions that are asymptotically AdS3_3, both for Brown-Henneaux and for the weakened boundary conditions, are also identified. The metric function that characterizes the profile of the AdS-wave behaves as a massive excitation on the spacetime, with an effective mass given by meff2=m21/(2l2)m_{eff}^2=m^2-1/(2l^2). For the critical value m2=1/(2l2)m^2=-1/(2l^2), the value of the effective mass precisely saturates the Breitenlohner-Freedman bound for the AdS3_3 space where the wave is propagating on. The analogies with the AdS-wave solutions of topologically massive gravity are also discussed. Besides, we consider the coupling of both massive deformations to Einstein gravity and find the exact configurations for the complete theory, discussing all the different branches exhaustively. One of the effects of introducing the Chern-Simons gravitational term is that of breaking the degeneracy in the effective mass of the generic modes of pure New Massive Gravity, producing a fine structure due to parity violation. Another effect is that the zoo of exact logarithmic specimens becomes considerably enlarged.Comment: 9 pages. Minor typos correcte

    Three-dimensional black holes, gravitational solitons, kinks and wormholes for BHT massive gravity

    Full text link
    The theory of massive gravity in three dimensions recently proposed by Bergshoeff, Hohm and Townsend (BHT) is considered. At the special case when the theory admits a unique maximally symmetric solution, a conformally flat space that contains black holes and gravitational solitons for any value of the cosmological constant is found. For negative cosmological constant, the black hole is characterized in terms of the mass and the "gravitational hair" parameter, providing a lower bound for the mass. For negative mass parameter, the black hole acquires an inner horizon, and the entropy vanishes at the extremal case. Gravitational solitons and kinks, being regular everywhere, are obtained from a double Wick rotation of the black hole. A wormhole solution in vacuum that interpolates between two static universes of negative spatial curvature is obtained as a limiting case of the gravitational soliton with a suitable identification. The black hole and the gravitational soliton fit within a set of relaxed asymptotically AdS conditions as compared with the ones of Brown and Henneaux. In the case of positive cosmological constant the black hole possesses an event and a cosmological horizon, whose mass is bounded from above. Remarkably, the temperatures of the event and the cosmological horizons coincide, and at the extremal case one obtains the analogue of the Nariai solution, dS2×S1dS_{2}\times S^{1}. A gravitational soliton is also obtained through a double Wick rotation of the black hole. The Euclidean continuation of these solutions describes instantons with vanishing Euclidean action. For vanishing cosmological constant the black hole and the gravitational soliton are asymptotically locally flat spacetimes. The rotating solutions can be obtained by boosting the previous ones in the tϕt-\phi plane.Comment: Talk given at the "Workshop on Gravity in Three Dimensions," 14-24 April 2009, ESI, Vienna. 30 pages, 6 figures. V2: minor changes and section 6 slightly improved. Last version for JHE

    Hamiltonian analysis of BHT massive gravity

    Full text link
    We study the Hamiltonian structure of the Bergshoeff-Hohm-Townsend (BHT) massive gravity with a cosmological constant. In the space of coupling constants (Λ0,m2)(\Lambda_0,m^2), our canonical analysis reveals the special role of the condition Λ0/m21\Lambda_0/m^2\neq-1. In this sector, the dimension of the physical phase space is found to be N=4N^*=4, which corresponds to two Lagrangian degree of freedom. When applied to the AdS asymptotic region, the canonical approach yields the conserved charges of the BTZ black hole, and central charges of the asymptotic symmetry algebra.Comment: LATEX, 21 pages; v2: minor correction

    Note on New Massive Gravity in AdS3AdS_3

    Full text link
    In this note we study the properties of linearized gravitational excitations in the new massive gravity theory in asymptotically AdS3AdS_3 spacetime and find that there is also a critical point for the mass parameter at which massive gravitons become massless as in topological massive gravity in AdS3AdS_3. However, at this critical point in the new massive gravity the energy of all branches of highest weight gravitons vanish and the central charges also vanish within the Brown-Henneaux boundary conditions. The new massive gravity in asymptotically AdS3AdS_3 spacetime seems to be trivial at this critical point under the Brown-Henneaux boundary conditions if the Brown-Henneaux boundary conditions can be consistent with this theory. At this point, the boundary conditions of log gravity may be preferred.Comment: v3 typos corrected, refs added, version to appear in JHE

    Massive Gravity Theories and limits of Ghost-free Bigravity models

    Get PDF
    We construct a class of theories which extend New Massive Gravity to higher orders in curvature in any dimension. The lagrangians arise as limits of a new class of bimetric theories of Lovelock gravity, which are unitary theories free from the Boulware-Deser ghost. These Lovelock bigravity models represent the most general non-chiral ghost-free theories of an interacting massless and massive spin-two field in any dimension. The scaling limit is taken in such a way that unitarity is explicitly broken, but the Boulware-Deser ghost remains absent. This automatically implies the existence of a holographic cc-theorem for these theories. We also show that the Born-Infeld extension of New Massive Gravity falls into our class of models demonstrating that this theory is also free of the Boulware-Deser ghost. These results extend existing connections between New Massive Gravity, bigravity theories, Galileon theories and holographic cc-theorems.Comment: 11+5 page

    Black-hole dynamics in BHT massive gravity

    Full text link
    Using an exact Vaidya-type null-dust solution, we study the area and entropy laws for dynamical black holes defined by a future outer trapping horizon in (2+1)-dimensional Bergshoeff-Hohm-Townsend (BHT) massive gravity. We consider the theory admitting a degenerate (anti-)de Sitter vacuum and pure BHT gravity. It is shown that, while the area of a black hole decreases by the injection of a null dust with positive energy density in several cases, the Wald-Kodama dynamical entropy always increases.Comment: 7 pages, 1 figur

    On the new massive gravity and AdS/CFT

    Full text link
    Demanding the existence of a simple holographic cc-theorem, it is shown that a general (parity preserving) theory of gravity in 2+1 dimensions involving upto four derivative curvature invariants reduces to the new massive gravity theory. We consider extending the theory including upto six derivative curvature invariants. Black hole solutions are presented and consistency with 1+1 CFTs is checked. We present evidence that bulk unitarity is still in conflict with a positive CFT central charge for generic choice of parameters. However, for a special choice of parameters appearing in the four and six derivative terms reduces the linearized equations to be two derivative, thereby ameliorating the unitarity problem.Comment: 16 pages, 2 figures. v4: typo correcte
    corecore