76 research outputs found

    Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis

    Get PDF
    Ustilago maydis is a ubiquitous pathogen of maize and a well-established model organism for the study of plant-microbe interactions. This basidiomycete fungus does not use aggressive virulence strategies to kill its host. U. maydis belongs to the group of biotrophic parasites (the smuts) that depend on living tissue for proliferation and development. Here we report the genome sequence for a member of this economically important group of biotrophic fungi. The 20.5-million-base U. maydis genome assembly contains 6,902 predicted protein-encoding genes and lacks pathogenicity signatures found in the genomes of aggressive pathogenic fungi, for example a battery of cell-wall-degrading enzymes. However, we detected unexpected genomic features responsible for the pathogenicity of this organism. Specifically, we found 12 clusters of genes encoding small secreted proteins with unknown function. A significant fraction of these genes exists in small gene families. Expression analysis showed that most of the genes contained in these clusters are regulated together and induced in infected tissue. Deletion of individual clusters altered the virulence of U. maydis in five cases, ranging from a complete lack of symptoms to hypervirulence. Despite years of research into the mechanism of pathogenicity in U. maydis, no 'true' virulence factors had been previously identified. Thus, the discovery of the secreted protein gene clusters and the functional demonstration of their decisive role in the infection process illuminate previously unknown mechanisms of pathogenicity operating in biotrophic fungi. Genomic analysis is, similarly, likely to open up new avenues for the discovery of virulence determinants in other pathogens. ©2006 Nature Publishing Group.J.K., M. B. and R.K. thank G. Sawers and U. Kämper for critical reading of the manuscript. The genome sequencing of Ustilago maydis strain 521 is part of the fungal genome initiative and was funded by National Human Genome Research Institute (USA) and BayerCropScience AG (Germany). F.B. was supported by a grant from the National Institutes of Health (USA). J.K. and R.K. thank the German Ministry of Education and Science (BMBF) for financing the DNA array setup and the Max Planck Society for their support of the manual genome annotation. F.B. was supported by a grant from the National Institutes of Health, B.J.S. was supported by the Natural Sciences and Engineering Research Council of Canada and the Canada Foundation for Innovation, J.W.K. received funding from the Natural Sciences and Engineering Research Council of Canada, J.R.-H. received funding from CONACYT, México, A.M.-M. was supported by a fellowship from the Humboldt Foundation, and L.M. was supported by an EU grant. Author Contributions All authors were involved in planning and executing the genome sequencing project. B.W.B., J.G., L.-J.M., E.W.M., D.D., C.M.W., J.B., S.Y., D.B.J., S.C., C.N., E.K., G.F., P.H.S., I.H.-H., M. Vaupel, H.V., T.S., J.M., D.P., C.S., A.G., F.C. and V. Vysotskaia contributed to the three independent sequencing projects; M.M., G.M., U.G., D.H., M.O. and H.-W.M. were responsible for gene model refinement, database design and database maintenance; G.M., J. Kämper, R.K., G.S., M. Feldbrügge, J.S., C.W.B., U.F., M.B., B.S., B.J.S., M.J.C., E.C.H.H., S.M., F.B., J.W.K., K.J.B., J. Klose, S.E.G., S.J.K., M.H.P., H.A.B.W., R.deV., H.J.D., J.R.-H., C.G.R.-P., L.O.-C., M.McC., K.S., J.P.-M., J.I.I., W.H., P.G., P.S.-A., M. Farman, J.E.S., R.S., J.M.G.-P., J.C.K., W.L. and D.H. were involved in functional annotation and interpretation; T.B., O.M., L.M., A.M.-M., D.G., K.M., N.R., V. Vincon, M. VraneŠ, M.S. and O.L. performed experiments. J. Kämper, R.K. and M.B. wrote and edited the paper with input from L.-J.M., J.G., F.B., J.W.K., B.J.S. and S.E.G. Individual contributions of authors can be found as Supplementary Notes

    Scaling the state: Egypt in the third millennium BC

    Get PDF
    Discussions of the early Egyptian state suffer from a weak consideration of scale. Egyptian archaeologists derive their arguments primarily from evidence of court cemeteries, elite tombs, and monuments of royal display. The material informs the analysis of kingship, early writing, and administration but it remains obscure how the core of the early Pharaonic state was embedded in the territory it claimed to administer. This paper suggests that the relationship between centre and hinterland is key for scaling the Egyptian state of the Old Kingdom (ca. 2,700-2,200 BC). Initially, central administration imagines Egypt using models at variance with provincial practice. The end of the Old Kingdom demarcates not the collapse, but the beginning of a large-scale state characterized by the coalescence of central and local models

    Mutation analysis of 18 nephronophthisis associated ciliopathy disease genes using a DNA pooling and next generation sequencing strategy

    Get PDF
    Background Nephronophthisis associated ciliopathies (NPHP-AC) comprise a group of autosomal recessive cystic kidney diseases that includes nephronophthisis (NPHP), Senior-Loken syndrome (SLS), Joubert syndrome (JBTS), and Meckel-Gruber syndrome (MKS). To date, causative mutations in NPHP-AC have been described for 18 different genes, rendering mutation analysis tedious and expensive. To overcome the broad genetic locus heterogeneity, a strategy of DNA pooling with consecutive massively parallel resequencing (MPR) was devised.Methods In 120 patients with severe NPHP-AC phenotypes, five pools of genomic DNA with 24 patients each were prepared which were used as templates in order to PCR amplify all 376 exons of 18 NPHP-AC genes (NPHP1, INVS, NPHP3, NPHP4, IQCB1, CEP290, GLIS2, RPGRIP1L, NEK8, TMEM67, INPP5E, TMEM216, AHI1, ARL13B, CC2D2A, TTC21B, MKS1, and XPNPEP3). PCR products were then subjected to MPR on an Illumina Genome-Analyser and mutations were subsequently assigned to their respective mutation carrier via CEL I endonuclease based heteroduplex screening and confirmed by Sanger sequencing.Results For proof of principle, DNA from patients with known mutations was used and detection of 22 out of 24 different alleles (92% sensitivity) was demonstrated. MPR led to the molecular diagnosis in 30/120 patients (25%) and 54 pathogenic mutations (27 novel) were identified in seven different NPHP-AC genes. Additionally, in 24 patients only single heterozygous variants of unknown significance were found.Conclusions The combined approach of DNA pooling followed by MPR strongly facilitates mutation analysis in broadly heterogeneous single gene disorders. The lack of mutations in 75% of patients in this cohort indicates further extensive heterogeneity in NPHP-AC
    corecore