70 research outputs found
Brain bases of morphological processing in young children
How does the developing brain support the transition from spoken language to print? Two spoken language abilities form the initial base of child literacy across languages: knowledge of language sounds (phonology) and knowledge of the smallest units that carry meaning (morphology). While phonology has received much attention from the field, the brain mechanisms that support morphological competence for learning to read remain largely unknown. In the present study, young Englishâspeaking children completed an auditory morphological awareness task behaviorally (nâ=â69, ages 6â12) and in fMRI (nâ=â16). The data revealed two findings: First, children with better morphological abilities showed greater activation in left temporoparietal regions previously thought to be important for supporting phonological reading skills, suggesting that this region supports multiple language abilities for successful reading acquisition. Second, children showed activation in left frontal regions previously found active in young Chinese readers, suggesting morphological processes for reading acquisition might be similar across languages. These findings offer new insights for developing a comprehensive model of how spoken language abilities support children's reading acquisition across languages. Hum Brain Mapp 36:2890â2900, 2015. © 2015 Wiley Periodicals, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/112232/1/hbm22815.pd
Caffeine as a tool for investigating the integration of Cdc25 phosphorylation, activity and ubiquitin-dependent degradation in Schizosaccharomyces pombe
The evolutionarily conserved Cdc25 phosphatase is an essential protein that removes inhibitory phosphorylation moieties on the mitotic regulator Cdc2. Together with the Wee1 kinase, a negative regulator of Cdc2 activity, Cdc25 is thus a central regulator of cell cycle progression in Schizosaccharomyces pombe. The expression and activity of Cdc25 is dependent on the activity of the Target of Rapamycin Complex 1 (TORC1). TORC1 inhibition leads to the activation of Cdc25 and repression of Wee1, leading to advanced entry into mitosis. Withdrawal of nitrogen leads to rapid Cdc25 degradation via the ubiquitin- dependent degradation pathway by the Pub1 E3- ligase. Caffeine is believed to mediate the override of DNA damage checkpoint signalling, by inhibiting the activity of the ataxia telangiectasia mutated (ATM)/Rad3 homologues. This model remains controversial, as TORC1 appears to be the preferred target of caffeine in vivo. Recent studies suggest that caffeine induces DNA damage checkpoint override by inducing the nuclear accumulation of Cdc25 in S. pombe. Caffeine may thus modulate Cdc25 activity and stability via inhibition of TORC1. A clearer understanding of the mechanisms by which caffeine stabilises Cdc25, may provide novel insights into how TORC1 and DNA damage signalling is integrated
Does the Reading of Different Orthographies Produce Distinct Brain Activity Patterns? An ERP Study
Orthographies vary in the degree of transparency of spelling-sound correspondence. These range from shallow orthographies with transparent grapheme-phoneme relations, to deep orthographies, in which these relations are opaque. Only a few studies have examined whether orthographic depth is reflected in brain activity. In these studies a between-language design was applied, making it difficult to isolate the aspect of orthographic depth. In the present work this question was examined using a within-subject-and-language investigation. The participants were speakers of Hebrew, as they are skilled in reading two forms of script transcribing the same oral language. One form is the shallow pointed script (with diacritics), and the other is the deep unpointed script (without diacritics). Event-related potentials (ERPs) were recorded while skilled readers carried out a lexical decision task in the two forms of script. A visual non-orthographic task controlled for the visual difference between the scripts (resulting from the addition of diacritics to the pointed script only). At an early visual-perceptual stage of processing (âŒ165 ms after target onset), the pointed script evoked larger amplitudes with longer latencies than the unpointed script at occipital-temporal sites. However, these effects were not restricted to orthographic processing, and may therefore have reflected, at least in part, the visual load imposed by the diacritics. Nevertheless, the results implied that distinct orthographic processing may have also contributed to these effects. At later stages (âŒ340 ms after target onset) the unpointed script elicited larger amplitudes than the pointed one with earlier latencies. As this latency has been linked to orthographic-linguistic processing and to the classification of stimuli, it is suggested that these differences are associated with distinct lexical processing of a shallow and a deep orthography
Redundant Mechanisms Prevent Mitotic Entry Following Replication Arrest in the Absence of Cdc25 Hyper-Phosphorylation in Fission Yeast
Following replication arrest the Cdc25 phosphatase is phosphorylated and inhibited by Cds1. It has previously been reported that expressing Cdc25 where 9 putative amino-terminal Cds1 phosphorylation sites have been substituted to alanine results in bypass of the DNA replication checkpoint. However, these results were acquired by expression of the phosphorylation mutant using a multicopy expression vector in a genetic background where the DNA replication checkpoint is intact. In order to clarify these results we constructed a Cdc25(9A)-GFP native promoter integrant and examined its effect on the replication checkpoint at endogenous expression levels. In this strain the replication checkpoint operates normally, conditional on the presence of the Mik1 kinase. In response to replication arrest the Cdc25(9A)-GFP protein is degraded, suggesting the presence of a backup mechanism to eliminate the phosphatase when it cannot be inhibited through phosphorylation
Predictive sentence comprehension during story-listening in autism spectrum disorder
Individuals with Autism Spectrum Disorder (ASD) show a range of language production deficits, however, language comprehension in ASD remains under-studied in part because co-morbid social deficits affect behavioural compliance. This challenge can be overcome by engaging participants in a naturalistic task while passively collecting neural signals. To test predictive processing with naturalistic language, we collect MEG data while 16 8â12-year-old high-functioning participants with a clinical diagnosis of ASD and 16 age- and gender-matched typically developing peers listen to an audiobook story. The neuromagnetic signals are correlated with word-by-word states from a computational model that quantifies incremental sentence predictions in terms of surprisal. Consistent with prior eye-tracking work, our results are compatible with predictive parsing that is equivalent between high-functioning individuals with ASD and TD peers
The "Perceptual Wedge Hypothesis" as the basis for bilingual babies phonetic processing advantage: New insights from fNIRS brain imaging
a b s t r a c t In a neuroimaging study focusing on young bilinguals, we explored the brains of bilingual and monolingual babies across two age groups (younger 4-6 months, older 10-12 months), using fNIRS in a new event-related design, as babies processed linguistic phonetic (Native English, Non-Native Hindi) and nonlinguistic Tone stimuli. We found that phonetic processing in bilingual and monolingual babies is accomplished with the same language-specific brain areas classically observed in adults, including the left superior temporal gyrus (associated with phonetic processing) and the left inferior frontal cortex (associated with the search and retrieval of information about meanings, and syntactic and phonological patterning), with intriguing developmental timing differences: left superior temporal gyrus activation was observed early and remained stably active over time, while left inferior frontal cortex showed greater increase in neural activation in older babies notably at the precise age when babies' enter the universal first-word milestone, thus revealing a first-time focal brain correlate that may mediate a universal behavioral milestone in early human language acquisition. A difference was observed in the older bilingual babies' resilient neural and behavioral sensitivity to Non-Native phonetic contrasts at a time when monolingual babies can no longer make such discriminations. We advance the ''Perceptual Wedge Hypothesis'' as one possible explanation for how exposure to greater than one language may alter neural and language processing in ways that we suggest are advantageous to language users. The brains of bilinguals and multilinguals may provide the most powerful window into the full neural ''extent and variability'' that our human species' language processing brain areas could potentially achieve
- âŠ