470 research outputs found
Clinical consequences of submicroscopic malaria parasitaemia in Uganda.
BACKGROUND: Submicroscopic malaria parasitaemia is common in both high- and low-endemicity settings, but its clinical consequences are unclear. METHODS: A cohort of 364 children (0.5-10 years of age) and 106 adults was followed from 2011 to 2016 in Tororo District, Uganda using passive surveillance for malaria episodes and active surveillance for parasitaemia. Participants presented every 90 days for routine visits (n = 9075); a subset was followed every 30 days. Participants who presented with fever and a positive blood smear were treated for malaria. At all routine visits microscopy was performed and samples from subjects with a negative blood smear underwent loop-mediated isothermal amplification for detection of plasmodial DNA. RESULTS: Submicroscopic parasitaemia was common; the proportion of visits with submicroscopic parasitemia was 25.8% in children and 39.2% in adults. For children 0.5-10 years of age, but not adults, having microscopic and submicroscopic parasitaemia at routine visits was significantly associated with both fever (adjusted risk ratios [95% CI], 2.64 [2.16-3.22], 1.67 [1.37-2.03]) and non-febrile illness (aRR [CI], 1.52 [1.30-1.78], 1.26 [1.09-1.47]), compared to not having parasitaemia. After stratifying by age, significant associations were seen between submicroscopic parasitaemia and fever in children aged 2-< 5 and 5-10 years (aRR [CI], 1.42 [1.03-1.98], 2.01 [1.49-2.71]), and submicroscopic parasitaemia and non-febrile illness in children aged 5-10 years (aRR [CI], 1.44 [1.17-1.78]). These associations were maintained after excluding individuals with a malaria episode within the preceding 14 or following 7 days, and after adjusting for household wealth. CONCLUSIONS: Submicroscopic malaria infections were associated with fever and non-febrile illness in Ugandan children. These findings support malaria control strategies that target low-density infections
Vδ2+ T cell response to malaria correlates with protection from infection but is attenuated with repeated exposure.
Vδ2+ γδ T cells are semi-innate T cells that expand markedly following P. falciparum (Pf) infection in naïve adults, but are lost and become dysfunctional among children repeatedly exposed to malaria. The role of these cells in mediating clinical immunity (i.e. protection against symptoms) to malaria remains unclear. We measured Vδ2+ T cell absolute counts at acute and convalescent malaria timepoints (n = 43), and Vδ2+ counts, cellular phenotype, and cytokine production following in vitro stimulation at asymptomatic visits (n = 377), among children aged 6 months to 10 years living in Uganda. Increasing age was associated with diminished in vivo expansion following malaria, and lower Vδ2 absolute counts overall, among children living in a high transmission setting. Microscopic parasitemia and expression of the immunoregulatory markers Tim-3 and CD57 were associated with diminished Vδ2+ T cell pro-inflammatory cytokine production. Higher Vδ2 pro-inflammatory cytokine production was associated with protection from subsequent Pf infection, but also with an increased odds of symptoms once infected. Vδ2+ T cells may play a role in preventing malaria infection in children living in endemic settings; progressive loss and dysfunction of these cells may represent a disease tolerance mechanism that contributes to the development of clinical immunity to malaria
Epidemiology of Subpatent Plasmodium Falciparum Infection: Implications for Detection of Hotspots with Imperfect Diagnostics.
At the local level, malaria transmission clusters in hotspots, which may be a group of households that experience higher than average exposure to infectious mosquitoes. Active case detection often relying on rapid diagnostic tests for mass screen and treat campaigns has been proposed as a method to detect and treat individuals in hotspots. Data from a cross-sectional survey conducted in north-western Tanzania were used to examine the spatial distribution of Plasmodium falciparum and the relationship between household exposure and parasite density. Dried blood spots were collected from consenting individuals from four villages during a survey conducted in 2010. These were analysed by PCR for the presence of P. falciparum, with the parasite density of positive samples being estimated by quantitative PCR. Household exposure was estimated using the distance-weighted PCR prevalence of infection. Parasite density simulations were used to estimate the proportion of infections that would be treated using a screen and treat approach with rapid diagnostic tests (RDT) compared to targeted mass drug administration (tMDA) and Mass Drug Administration (MDA). Polymerase chain reaction PCR analysis revealed that of the 3,057 blood samples analysed, 1,078 were positive. Mean distance-weighted PCR prevalence per household was 34.5%. Parasite density was negatively associated with transmission intensity with the odds of an infection being subpatent increasing with household exposure (OR 1.09 per 1% increase in exposure). Parasite density was also related to age, being highest in children five to ten years old and lowest in those > 40 years. Simulations of different tMDA strategies showed that treating all individuals in households where RDT prevalence was above 20% increased the number of infections that would have been treated from 43 to 55%. However, even with this strategy, 45% of infections remained untreated. The negative relationship between household exposure and parasite density suggests that DNA-based detection of parasites is needed to provide adequate sensitivity in hotspots. Targeting MDA only to households with RDT-positive individuals may allow a larger fraction of infections to be treated. These results suggest that community-wide MDA, instead of screen and treat strategies, may be needed to successfully treat the asymptomatic, subpatent parasite reservoir and reduce transmission in similar settings
Avidity of anti-malarial antibodies inversely related to transmission intensity at three sites in Uganda.
BACKGROUND: People living in malaria endemic areas acquire protection from severe malaria quickly, but protection from clinical disease and control of parasitaemia is acquired only after many years of repeated infections. Antibodies play a central role in protection from clinical disease; however, protective antibodies are slow to develop. This study sought to investigate the influence of Plasmodium falciparum exposure on the acquisition of high-avidity antibodies to P. falciparum antigens, which may be associated with protection. METHODS: Cross-sectional surveys were performed in children and adults at three sites in Uganda with varied P. falciparum transmission intensity (entomological inoculation rates; 3.8, 26.6, and 125 infectious bites per person per year). Sandwich ELISA was used to measure antibody responses to two P. falciparum merozoite surface antigens: merozoite surface protein 1-19 (MSP1-19) and apical membrane antigen 1 (AMA1). In individuals with detectable antibody levels, guanidine hydrochloride (GuHCl) was added to measure the relative avidity of antibody responses by ELISA. RESULTS: Within a site, there were no significant differences in median antibody levels between the three age groups. Between sites, median antibody levels were generally higher in the higher transmission sites, with differences more apparent for AMA-1 and in ≥5 year group. Similarly, median avidity index (proportion of high avidity antibodies) showed no significant increase with increasing age but was significantly lower at sites of higher transmission amongst participants ≥5 years of age. Using 5 M GuHCl, the median avidity indices in the ≥5 year group at the highest and lowest transmission sites were 19.9 and 26.8, respectively (p = 0.0002) for MSP1-19 and 12.2 and 17.2 (p = 0.0007) for AMA1. CONCLUSION: Avidity to two different P. falciparum antigens was lower in areas of high transmission intensity compared to areas with lower transmission. Appreciation of the mechanisms behind these findings as well as their clinical consequences will require additional investigation, ideally utilizing longitudinal data and investigation of a broader array of responses
Different methodological approaches to the assessment of in vivo efficacy of three artemisinin-based combination antimalarial treatments for the treatment of uncomplicated falciparum malaria in African children.
BACKGROUND: Use of different methods for assessing the efficacy of artemisinin-based combination antimalarial treatments (ACTs) will result in different estimates being reported, with implications for changes in treatment policy. METHODS: Data from different in vivo studies of ACT treatment of uncomplicated falciparum malaria were combined in a single database. Efficacy at day 28 corrected by PCR genotyping was estimated using four methods. In the first two methods, failure rates were calculated as proportions with either (1a) reinfections excluded from the analysis (standard WHO per-protocol analysis) or (1b) reinfections considered as treatment successes. In the second two methods, failure rates were estimated using the Kaplan-Meier product limit formula using either (2a) WHO (2001) definitions of failure, or (2b) failure defined using parasitological criteria only. RESULTS: Data analysed represented 2926 patients from 17 studies in nine African countries. Three ACTs were studied: artesunate-amodiaquine (AS+AQ, N = 1702), artesunate-sulphadoxine-pyrimethamine (AS+SP, N = 706) and artemether-lumefantrine (AL, N = 518).Using method (1a), the day 28 failure rates ranged from 0% to 39.3% for AS+AQ treatment, from 1.0% to 33.3% for AS+SP treatment and from 0% to 3.3% for AL treatment. The median [range] difference in point estimates between method 1a (reference) and the others were: (i) method 1b = 1.3% [0 to 24.8], (ii) method 2a = 1.1% [0 to 21.5], and (iii) method 2b = 0% [-38 to 19.3].The standard per-protocol method (1a) tended to overestimate the risk of failure when compared to alternative methods using the same endpoint definitions (methods 1b and 2a). It either overestimated or underestimated the risk when endpoints based on parasitological rather than clinical criteria were applied. The standard method was also associated with a 34% reduction in the number of patients evaluated compared to the number of patients enrolled. Only 2% of the sample size was lost when failures were classified on the first day of parasite recurrence and survival analytical methods were used. CONCLUSION: The primary purpose of an in vivo study should be to provide a precise estimate of the risk of antimalarial treatment failure due to drug resistance. Use of survival analysis is the most appropriate way to estimate failure rates with parasitological recurrence classified as treatment failure on the day it occurs
The usefulness of rapid diagnostic tests in the new context of low malaria transmission in zanzibar.
BACKGROUND\ud
\ud
We assessed if histidine-rich-protein-2 (HRP2) based rapid diagnostic test (RDT) remains an efficient tool for Plasmodium falciparum case detection among fever patients in Zanzibar and if primary health care workers continue to adhere to RDT results in the new epidemiological context of low malaria transmission. Further, we evaluated the performance of RDT within the newly adopted integrated management of childhood illness (IMCI) algorithm in Zanzibar.\ud
\ud
METHODS AND FINDINGS\ud
\ud
We enrolled 3890 patients aged ≥2 months with uncomplicated febrile illness in this health facility based observational study conducted in 12 primary health care facilities in Zanzibar, between May-July 2010. One patient had an inconclusive RDT result. Overall 121/3889 (3.1%) patients were RDT positive. The highest RDT positivity rate, 32/528 (6.1%), was found in children aged 5-14 years. RDT sensitivity and specificity against PCR was 76.5% (95% CI 69.0-83.9%) and 99.9% (95% CI 99.7-100%), and against blood smear microscopy 78.6% (95% CI 70.8-85.1%) and 99.7% (95% CI 99.6-99.9%), respectively. All RDT positive, but only 3/3768 RDT negative patients received anti-malarial treatment. Adherence to RDT results was thus 3887/3889 (99.9%). RDT performed well in the IMCI algorithm with equally high adherence among children <5 years as compared with other age groups.\ud
\ud
CONCLUSIONS\ud
\ud
The sensitivity of HRP-2 based RDT in the hands of health care workers compared with both PCR and microscopy for P. falciparum case detection was relatively low, whereas adherence to test results with anti-malarial treatment was excellent. Moreover, the results provide evidence that RDT can be reliably integrated in IMCI as a tool for improved childhood fever management. However, the relatively low RDT sensitivity highlights the need for improved quality control of RDT use in primary health care facilities, but also for more sensitive point-of-care malaria diagnostic tools in the new epidemiological context of low malaria transmission in Zanzibar.\ud
\ud
TRIAL REGISTRATION\ud
\ud
ClinicalTrials.gov NCT01002066
Evaluating the performance of malaria genetics for inferring changes in transmission intensity using transmission modelling
Substantial progress has been made globally to control malaria, however there is a growing need for innovative new tools to ensure continued progress. One approach is to harness genetic sequencing and accompanying methodological approaches as have been used in the control of other infectious diseases. However, to utilise these methodologies for malaria we first need to extend the methods to capture the complex interactions between parasites, human and vector hosts, and environment, which all impact the level of genetic diversity and relatedness of malaria parasites. We develop an individual-based transmission model to simulate malaria parasite genetics parameterised using estimated relationships between complexity of infection and age from 5 regions in Uganda and Kenya. We predict that cotransmission and superinfection contribute equally to within-host parasite genetic diversity at 11.5% PCR prevalence, above which superinfections dominate. Finally, we characterise the predictive power of six metrics of parasite genetics for detecting changes in transmission intensity, before grouping them in an ensemble statistical model. The model predicted malaria prevalence with a mean absolute error of 0.055. Different assumptions about the availability of sample metadata were considered, with the most accurate predictions of malaria prevalence made when the clinical status and age of sampled individuals is known. Parasite genetics may provide a novel surveillance tool for estimating the prevalence of malaria in areas in which prevalence surveys are not feasible. However, the findings presented here reinforce the need for patient metadata to be recorded and made available within all future attempts to use parasite genetics for surveillance
Associations between red blood cell variants and malaria among children and adults from three areas of Uganda: a prospective cohort study.
BACKGROUND: Multiple red blood cell (RBC) variants appear to offer protection against the most severe forms of Plasmodium falciparum malaria. Associations between these variants and uncomplicated malaria are less clear. METHODS: Data from a longitudinal cohort study conducted in 3 sub-counties in Uganda was used to quantify associations between three red blood cell variants Hb [AA, AS, S (rs334)], alpha thalassaemia 3.7 kb deletion, and glucose-6-phosphate dehydrogenase deficiency A-(G6PD 202A genotype) and malaria incidence, parasite prevalence, parasite density (a measure of anti-parasite immunity) and body temperature adjusted for parasite density (a measure of anti-disease immunity). All analyses were adjusted for age, average household entomological inoculation rate, and study site. Results for all variants were compared to those for wild type genotypes. RESULTS: In children, HbAS was associated, compared to wild type, with a lower incidence of malaria (IRR = 0.78, 95% CI 0.66-0.92, p = 0.003), lower parasite density upon infection (PR = 0.66, 95% CI 0.51-0.85, p = 0.001), and lower body temperature for any given parasite density (- 0.13 ℃, 95% CI - 0.21, - 0.05, p = 0.002). In children, HbSS was associated with a lower incidence of malaria (IRR = 0.17, 95% CI 0.04-0.71, p = 0.02) and lower parasite density upon infection (PR = 0.31, 95% CI 0.18-0.54, p < 0.001). α-/αα thalassaemia, was associated with higher parasite prevalence in both children and adults (RR = 1.23, 95% CI 1.06-1.43, p = 0.008 and RR = 1.52, 95% CI 1.04-2.23, p = 0.03, respectively). G6PD deficiency was associated with lower body temperature for any given parasite density only among male hemizygote children (- 0.19 ℃, 95% CI - 0.31, - 0.06, p = 0.003). CONCLUSION: RBC variants were associated with non-severe malaria outcomes. Elucidation of the mechanisms by which they confer protection will improve understanding of genetic protection against malaria
Characterizing microscopic and submicroscopic malaria parasitaemia at three sites with varied transmission intensity in Uganda.
BACKGROUND: Parasite prevalence is a key metric used to quantify the burden of malaria and assess the impact of control strategies. Most published estimates of parasite prevalence are based on microscopy and likely underestimate true prevalence. METHODS: Thick smear microscopy was performed in cohorts of children (aged 6 month to 10 years) and adults every 90 days over 2 years, at three sites of varying transmission intensity in Uganda. Microscopy-negative samples were tested for sub-microscopic parasitaemia using loop-mediated isothermal amplification (LAMP). Generalized estimating equation models were used to evaluate associations between age and parasitaemia, factors associated with sub-microscopic infection and associations between parasitaemia and haemoglobin. RESULTS: A total of 9260 samples were collected from 1245 participants. Parasite prevalence among children across the three sites was 7.4, 9.4 and 28.8 % by microscopy and 21.3, 31.8 and 69.0 % by microscopy plus LAMP. Parasite prevalence among adults across the three sites was 3.1, 3.0 and 5.2 % by microscopy and 18.8, 24.2 and 53.5 % by microscopy plus LAMP. Among those with parasitaemia, adults and persons recently treated with anti-malarial therapy had the highest prevalence of sub-microscopic infection. Children with sub-microscopic or microscopic parasitaemia had lower mean haemoglobin levels compared to children with no detectable parasites. CONCLUSIONS: Across a range of transmission intensities in Uganda, microscopy vastly underestimated parasite prevalence, especially among adults
- …