96 research outputs found
Cosmological Evolution of a Purely Conical Codimension-2 Brane World
We study the cosmological evolution of isotropic matter on an infinitely thin
conical codimension-two brane-world. Our analysis is based on the boundary
dynamics of a six-dimensional model in the presence of an induced gravity term
on the brane and a Gauss-Bonnet term in the bulk. With the assumption that the
bulk contains only a cosmological constant Lambda_B, we find that the isotropic
evolution of the brane-universe imposes a tuned relation between the energy
density and the brane equation of state. The evolution of the system has fixed
points (attractors), which correspond to a final state of radiation for
Lambda_B=0 and to de Sitter state for Lambda_B>0. Furthermore, considering
anisotropic matter on the brane, the tuning of the parameters is lifted, and
new regions of the parametric space are available for the cosmological
evolution of the brane-universe. The analysis of the dynamics of the system
shows that, the isotropic fixed points remain attractors of the system, and for
values of Lambda_B which give acceptable cosmological evolution of the equation
of state, the line of isotropic tuning is a very weak attractor. The initial
conditions, in this case, need to be fine tuned to have an evolution with
acceptably small anisotropy.Comment: 20 pages, 4 figures, typo correcte
On the stationarity of linearly forced turbulence in finite domains
A simple scheme of forcing turbulence away from decay was introduced by
Lundgren some time ago, the `linear forcing', which amounts to a force term
linear in the velocity field with a constant coefficient. The evolution of
linearly forced turbulence towards a stationary final state, as indicated by
direct numerical simulations (DNS), is examined from a theoretical point of
view based on symmetry arguments. In order to follow closely the DNS the flow
is assumed to live in a cubic domain with periodic boundary conditions. The
simplicity of the linear forcing scheme allows one to re-write the problem as
one of decaying turbulence with a decreasing viscosity. Scaling symmetry
considerations suggest that the system evolves to a stationary state, evolution
that may be understood as the gradual breaking of a larger approximate symmetry
to a smaller exact symmetry. The same arguments show that the finiteness of the
domain is intimately related to the evolution of the system to a stationary
state at late times, as well as the consistency of this state with a high
degree of isotropy imposed by the symmetries of the domain itself. The
fluctuations observed in the DNS for all quantities in the stationary state can
be associated with deviations from isotropy. Indeed, self-preserving isotropic
turbulence models are used to study evolution from a direct dynamical point of
view, emphasizing the naturalness of the Taylor microscale as a self-similarity
scale in this system. In this context the stationary state emerges as a stable
fixed point. Self-preservation seems to be the reason behind a noted similarity
of the third order structure function between the linearly forced and freely
decaying turbulence, where again the finiteness of the domain plays an
significant role.Comment: 15 pages, 7 figures, changes in the discussion at the end of section
VI, formula (60) correcte
A supersymmetric D-brane Model of Space-Time Foam
We present a supersymmetric model of space-time foam with two stacks of eight
D8-branes with equal string tensions, separated by a single bulk dimension
containing D0-brane particles that represent quantum fluctuations in the
space-time foam. The ground state configuration with static D-branes has zero
vacuum energy. However, gravitons and other closed-string states propagating
through the bulk may interact with the D0-particles, causing them to recoil and
the vacuum energy to become non zero. This provides a possible origin of dark
energy. Recoil also distorts the background metric felt by energetic massless
string states, which travel at less than the usual (low-energy) velocity of
light. On the other hand, the propagation of chiral matter anchored on the D8
branes is not affected by such space-time foam effects.Comment: 33 pages, latex, five figure
BNN27, a 17-Spiroepoxy Steroid Derivative, Interacts With and Activates p75 Neurotrophin Receptor, Rescuing Cerebellar Granule Neurons from Apoptosis
Neurotrophin receptors mediate a plethora of signals affecting neuronal survival. The
p75 pan-neurotrophin receptor controls neuronal cell fate after its selective activation
by immature and mature isoforms of all neurotrophins. It also exerts pleiotropic effects
interacting with a variety of ligands in different neuronal or non-neuronal cells. In the
present study, we explored the biophysical and functional interactions of a bloodbrain-barrier
(BBB) permeable, C17-spiroepoxy steroid derivative, BNN27, with p75NTR
receptor. BNN27 was recently shown to bind to NGF high-affinity receptor, TrkA.
We now tested the p75NTR-mediated effects of BNN27 in mouse Cerebellar Granule
Neurons (CGNs), expressing p75NTR, but not TrkA receptors. Our findings show that
BNN27 physically interacts with p75NTR receptors in specific amino-residues of its
extracellular domain, inducing the recruitment of p75NTR receptor to its effector protein
RIP2 and the simultaneous release of RhoGDI in primary neuronal cells. Activation of
the p75NTR receptor by BNN27 reverses serum deprivation-induced apoptosis of CGNs
resulting in the decrease of the phosphorylation of pro-apoptotic JNK kinase and of the
cleavage of Caspase-3, effects completely abolished in CGNs, isolated from p75NTR null
mice. In conclusion, BNN27 represents a lead molecule for the development of novel
p75NTR ligands, controlling specific p75NTR-mediated signaling of neuronal cell fate, with
potential applications in therapeutics of neurodegenerative diseases and brain traum
On CPT Symmetry: Cosmological, Quantum-Gravitational and other possible violations and their phenomenology
I discuss various ways in which CPT symmetry may be violated, and their
phenomenology in current or immediate future experimental facilities, both
terrestrial and astrophysical. Specifically, I discuss first violations of CPT
symmetry due to the impossibility of defining a scattering matrix as a
consequence of the existence of microscopic or macroscopic space-time
boundaries, such as Planck-scale Black-Hole (event) horizons, or cosmological
horizons due to the presence of a (positive) cosmological constant in the
Universe. Second, I discuss CPT violation due to breaking of Lorentz symmetry,
which may characterize certain approaches to quantum gravity, and third, I
describe models of CPT non invariance due to violations of locality of
interactions. In each of the above categories I discuss experimental
sensitivities. I argue that the majority of Lorentz-violating cases of CPT
breaking, with minimal (linear) suppression by the Planck-mass scale, are
already excluded by current experimental tests. There are however some
(stringy) models which can evade these constraints.Comment: 27 pages latex, Conference talk Beyond the Desert 200
On the thin-shell limit of branes in the presence of Gauss-Bonnet interactions
In this paper we study thick-shell braneworld models in the presence of a
Gauss-Bonnet term. We discuss the peculiarities of the attainment of the
thin-shell limit in this case and compare them with the same situation in
Einstein gravity. We describe the two simplest families of thick-brane models
(parametrized by the shell thickness) one can think of. In the thin-shell
limit, one family is characterized by the constancy of its internal density
profile (a simple structure for the matter sector) and the other by the
constancy of its internal curvature scalar (a simple structure for the
geometric sector). We find that these two families are actually equivalent in
Einstein gravity and that the presence of the Gauss-Bonnet term breaks this
equivalence. In the second case, a shell will always keep some non-trivial
internal structure, either on the matter or on the geometric sectors, even in
the thin-shell limit.Comment: 17 pages, 2 figures, RevTeX 4. Revised version accepted for
publication in Physical Review
Intermediate inflation in Gauss-Bonnet braneworld
In this article we study an intermediate inflationary universe models using
the Gauss-Bonnet brane. General conditions required for these models to be
realizable are derived and discussed. We use recent astronomical observations
to constraint the parameters appearing in the model.Comment: 16 pages, 2 figures, accepted for publication in European Physical
Journal
Scalar brane backgrounds in higher order curvature gravity
We investigate maximally symmetric brane world solutions with a scalar field.
Five-dimensional bulk gravity is described by a general lagrangian which yields
field equations containing no higher than second order derivatives. This
includes the Gauss-Bonnet combination for the graviton. Stability and
gravitational properties of such solutions are considered, and we particularily
emphasise the modifications induced by the higher order terms. In particular it
is shown that higher curvature corrections to Einstein theory can give rise to
instabilities in brane world solutions. A method for analytically obtaining the
general solution for such actions is outlined. Genericaly, the requirement of a
finite volume element together with the absence of a naked singularity in the
bulk imposes fine-tuning of the brane tension. A model with a moduli scalar
field is analysed in detail and we address questions of instability and
non-singular self-tuning solutions. In particular, we discuss a case with a
normalisable zero mode but infinite volume element.Comment: published versio
Rotating black holes with equal-magnitude angular momenta in d=5 Einstein-Gauss-Bonnet theory
We construct rotating black hole solutions in Einstein-Gauss-Bonnet theory in
five spacetime dimensions. These black holes are asymptotically flat, and
possess a regular horizon of spherical topology and two equal-magnitude angular
momenta associated with two distinct planes of rotation. The action and global
charges of the solutions are obtained by using the quasilocal formalism with
boundary counterterms generalized for the case of Einstein-Gauss-Bonnet theory.
We discuss the general properties of these black holes and study their
dependence on the Gauss-Bonnet coupling constant . We argue that most
of the properties of the configurations are not affected by the higher
derivative terms. For fixed the set of black hole solutions terminates
at an extremal black hole with a regular horizon, where the Hawking temperature
vanishes and the angular momenta attain their extremal values. The domain of
existence of regular black hole solutions is studied. The near horizon geometry
of the extremal solutions is determined by employing the entropy function
formalism.Comment: 25 pages, 7 figure
Asymptotically Lifshitz wormholes and black holes for Lovelock gravity in vacuum
Static asymptotically Lifshitz wormholes and black holes in vacuum are shown
to exist for a class of Lovelock theories in d=2n+1>7 dimensions, selected by
requiring that all but one of their n maximally symmetric vacua are AdS of
radius l and degenerate. The wormhole geometry is regular everywhere and
connects two Lifshitz spacetimes with a nontrivial geometry at the boundary.
The dynamical exponent z is determined by the quotient of the curvature radii
of the maximally symmetric vacua according to n(z^2-1)+1=(l/L)^2, where L
corresponds to the curvature radius of the nondegenerate vacuum. Light signals
are able to connect both asymptotic regions in finite time, and the
gravitational field pulls towards a fixed surface located at some arbitrary
proper distance to the neck. The asymptotically Lifshitz black hole possesses
the same dynamical exponent and a fixed Hawking temperature given by T=z/(2^z
pi l). Further analytic solutions, including pure Lifshitz spacetimes with a
nontrivial geometry at the spacelike boundary, and wormholes that interpolate
between asymptotically Lifshitz spacetimes with different dynamical exponents
are also found.Comment: 19 pages, 1 figur
- …