12 research outputs found

    Study on the antineoplastic and toxicological effects of pomegranate (Punica granatum L.) leaf infusion using the K14-HPV16 transgenic mouse model

    Get PDF
    Punica granatum L. (pomegranate) has been used in functional foods due to its various health benefits. However, the in vivo biological potential of its leaf remains little known. This study has aimed to characterize the antineoplastic and toxicological properties of using pomegranate leaf infusion (PLI) on transgenic mice carrying human papillomavirus (HPV) type 16 oncogenes. Thirty-eight mice were divided into 3 wild-type (WT) and 3 transgenic (HPV) groups, with exposure to 0.5% PLI, 1.0% PLI, and water. The animals' body weight, drink and food consumption were recorded. Internal organs, skin samples and intracardiac blood were collected to evaluate toxicological parameters, neoplastic lesions and oxidative stress. The results indicated that PLI was safe as no mortality, no behavioural disorders and no significant differences in the levels of microhematocrit, serum biochemical markers, internal organ histology, and oxidative stress was found among the WT groups. Histological analysis revealed that HPV animals that consumed PLI exhibited reduced hepatic, renal and cutaneous lesions compared with the HPV control group. Low-dose PLI consumption significantly diminished renal hydronephrosis lesions and relieved dysplasia and carcinoma lesions in the chest skin. Oxidative stress analysis showed that low-dose PLI consumption may have more benefits than high-dose PLI. These results suggest that oral administration of PLI has the potential to alleviate non-neoplastic and neoplastic lesions against HPV16-induced organ and skin injuries, though this requires further scientific research studies.info:eu-repo/semantics/publishedVersio

    Critical Review on the Significance of Olive Phytochemicals in Plant Physiology and Human Health

    No full text
    Olive oil displays remarkable organoleptic and nutritional features, which turn it into a foodstuff appreciated by consumers, and a basic component of the Mediterranean diet. Indeed, the noticed benefits of including olive oil in the diet have been assigned to the presence of diverse bioactive compounds with different molecular structures. These compounds confer a wide range of biological properties to this food matrix, including the prevention of distinct human diseases as well as the modulation of their severity. The most relevant bioactive compounds present in olive oil correspond to benzoic and cinnamic acids, phenolic alcohols and secoiridoids, and also flavonoids. Over the last decades, several studies, devoted to gaining a further insight into the relative contribution of the separate groups and individual compounds for their biological activities, have been conducted, providing relevant information on structure–activity relationships. Therefore, this paper critically reviews the health benefits evidenced by distinct phenolic compounds found in olive oils, thus contributing to clarify the relationship between their chemical structures and biological functions, further supporting their interest as essential ingredients of wholesome foods

    Effects of Olive Trees Age on the Minor Components of Oueslati Virgin Olive Oils Produced from Olives Harvested at Different Ripening Degrees

    No full text
    Phenolics, volatiles, squalene, tocopherols, and fatty acids of virgin olive oils (VOO) from adult and young olive trees of the Oueslati variety, typically cultivated in the Center of Tunisia, were analyzed at three different harvesting periods. Significant differences in contents of saturated fatty acids (p\ua0<\ua00.05), squalene (p\ua0<\ua00.05), alpha-tocopherol and total tocopherol (p\ua0<\ua00.02) and oxidized form of decarboxymethyl oleuropein aglycon (p\ua0<\ua00.05) were seen between VOO from adult and young trees during maturation. Moreover, the volatile profiles of VOO from adult and young trees showed significant differences in the amounts of hexanal, 1-penten-3-ol (p\ua0<\ua00.05), (Z)-3-hexenal and (Z)-2-penten-1-ol (p\ua0<\ua00.01). Principal component analysis showed that olives from adult trees should be harvested at the cherry stage of maturation to obtain a satisfactory level of oil quality, while olives from young trees should be harvested at the black maturation stage
    corecore