667 research outputs found
Temperature Dependent Empirical Pseudopotential Theory For Self-Assembled Quantum Dots
We develop a temperature dependent empirical pseudopotential theory to study
the electronic and optical properties of self-assembled quantum dots (QDs) at
finite temperature. The theory takes the effects of both lattice expansion and
lattice vibration into account. We apply the theory to the InAs/GaAs QDs. For
the unstrained InAs/GaAs heterostructure, the conduction band offset increases
whereas the valence band offset decreases with increasing of the temperature,
and there is a type-I to type-II transition at approximately 135 K. Yet, for
InAs/GaAs QDs, the holes are still localized in the QDs even at room
temperature, because the large lattice mismatch between InAs and GaAs greatly
enhances the valence band offset. The single particle energy levels in the QDs
show strong temperature dependence due to the change of confinement potentials.
Because of the changes of the band offsets, the electron wave functions
confined in QDs increase by about 1 - 5%, whereas the hole wave functions
decrease by about 30 - 40% when the temperature increases from 0 to 300 K. The
calculated recombination energies of exciton, biexciton and charged excitons
show red shifts with increasing of the temperature, which are in excellent
agreement with available experimental data
Recommended from our members
Simple method for sub-diffraction resolution imaging of cellular structures on standard confocal microscopes by three-photon absorption of quantum dots
This study describes a simple technique that improves a recently developed 3D sub-diffraction imaging method based on three-photon absorption of commercially available quantum dots. The method combines imaging of biological samples via tri-exciton generation in quantum dots with deconvolution and spectral multiplexing, resulting in a novel approach for multi-color imaging of even thick biological samples at a 1.4 to 1.9-fold better spatial resolution. This approach is realized on a conventional confocal microscope equipped with standard continuous-wave lasers. We demonstrate the potential of multi-color tri-exciton imaging of quantum dots combined with deconvolution on viral vesicles in lentivirally transduced cells as well as intermediate filaments in three-dimensional clusters of mouse-derived neural stem cells (neurospheres) and dense microtubuli arrays in myotubes formed by stacks of differentiated C2C12 myoblasts
Ultrafast supercontinuum spectroscopy of carrier multiplication and biexcitonic effects in excited states of PbS quantum dots
We examine the multiple exciton population dynamics in PbS quantum dots by
ultrafast spectrally-resolved supercontinuum transient absorption (SC-TA). We
simultaneously probe the first three excitonic transitions over a broad
spectral range. Transient spectra show the presence of first order bleach of
absorption for the 1S_h-1S_e transition and second order bleach along with
photoinduced absorption band for 1P_h-1P_e transition. We also report evidence
of the one-photon forbidden 1S_{h,e}-1P_{h,e} transition. We examine signatures
of carrier multiplication (multiexcitons for the single absorbed photon) from
analysis of the first and second order bleaches, in the limit of low absorbed
photon numbers (~ 10^-2), at pump energies from two to four times the
semiconductor band gap. The multiexciton generation efficiency is discussed
both in terms of a broadband global fit and the ratio between early- to
long-time transient absorption signals.. Analysis of population dynamics shows
that the bleach peak due to the biexciton population is red-shifted respect the
single exciton one, indicating a positive binding energy.Comment: 16 pages, 5 figure
Theoretical interpretation of the experimental electronic structure of lens shaped, self-assembled InAs/GaAs quantum dots
We adopt an atomistic pseudopotential description of the electronic structure
of self-assembled, lens shaped InAs quantum dots within the ``linear
combination of bulk bands'' method. We present a detailed comparison with
experiment, including quantites such as the single particle electron and hole
energy level spacings, the excitonic band gap, the electron-electron, hole-hole
and electron hole Coulomb energies and the optical polarization anisotropy. We
find a generally good agreement, which is improved even further for a dot
composition where some Ga has diffused into the dots.Comment: 16 pages, 5 figures. Submitted to Physical Review
Multiband tight-binding theory of disordered ABC semiconductor quantum dots: Application to the optical properties of alloyed CdZnSe nanocrystals
Zero-dimensional nanocrystals, as obtained by chemical synthesis, offer a
broad range of applications, as their spectrum and thus their excitation gap
can be tailored by variation of their size. Additionally, nanocrystals of the
type ABC can be realized by alloying of two pure compound semiconductor
materials AC and BC, which allows for a continuous tuning of their absorption
and emission spectrum with the concentration x. We use the single-particle
energies and wave functions calculated from a multiband sp^3 empirical
tight-binding model in combination with the configuration interaction scheme to
calculate the optical properties of CdZnSe nanocrystals with a spherical shape.
In contrast to common mean-field approaches like the virtual crystal
approximation (VCA), we treat the disorder on a microscopic level by taking
into account a finite number of realizations for each size and concentration.
We then compare the results for the optical properties with recent experimental
data and calculate the optical bowing coefficient for further sizes
Hemodynamic and EEG Time-Courses During Unilateral Hand Movement in Patients with Cortical Myoclonus. An EEG-fMRI and EEG-TD-fNIRS Study.
Multimodal human brain mapping has been proposed as an integrated approach capable of improving the recognition of the cortical correlates of specific neurological functions. We used simultaneous EEG-fMRI (functional magnetic resonance imaging) and EEG-TD-fNIRS (time domain functional near-infrared spectroscopy) recordings to compare different hemodynamic methods with changes in EEG in ten patients with progressive myoclonic epilepsy and 12 healthy controls. We evaluated O(2)Hb, HHb and Blood oxygen level-dependent (BOLD) changes and event-related desynchronization/synchronization (ERD/ERS) in the alpha and beta bands of all of the subjects while they performed a simple motor task. The general linear model was used to obtain comparable fMRI and TD-fNIRS activation maps. We also analyzed cortical thickness in order to evaluate any structural changes. In the patients, the TD-NIRS and fMRI data significantly correlated and showed a significant lessening of the increase in O(2)Hb and the decrease in BOLD. The post-movement beta rebound was minimal or absent in patients. Cortical thickness was moderately reduced in the motor area of the patients and correlated with the reduction in the hemodynamic signals. The fMRI and TD-NIRS results were consistent, significantly correlated and showed smaller hemodynamic changes in the patients. This finding may be partially attributable to mild cortical thickening. However, cortical hyperexcitability, which is known to generate myoclonic jerks and probably accounts for the lack of EEG beta-ERS, did not reflect any increased energy requirement. We hypothesize that this is due to a loss of inhibitory neuronal components that typically fire at high frequencies
Diffuse charge and Faradaic reactions in porous electrodes
Porous electrodes instead of flat electrodes are widely used in electrochemical systems to boost storage
capacities for ions and electrons, to improve the transport of mass and charge, and to enhance reaction rates.
Existing porous electrode theories make a number of simplifying assumptions: (i) The charge-transfer rate is
assumed to depend only on the local electrostatic potential difference between the electrode matrix and the pore
solution, without considering the structure of the double layer (DL) formed in between; (ii) the charge-transfer
rate is generally equated with the salt-transfer rate not only at the nanoscale of the matrix-pore interface, but also
at the macroscopic scale of transport through the electrode pores. In this paper, we extend porous electrode theory
by including the generalized Frumkin-Butler-Volmer model of Faradaic reaction kinetics, which postulates charge
transfer across the molecular Stern layer located in between the electron-conducting matrix phase and the plane
of closest approach for the ions in the diffuse part of the DL. This is an elegant and purely local description of the
charge-transfer rate, which self-consistently determines the surface charge and does not require consideration of
reference electrodes or comparison with a global equilibrium. For the description of the DLs, we consider the
two natural limits: (i) the classical Gouy-Chapman-Stern model for thin DLs compared to the macroscopic pore
dimensions, e.g., for high-porosity metallic foams (macropores >50 nm) and (ii) a modified Donnan model for
strongly overlapping DLs, e.g., for porous activated carbon particles (micropores <2 nm). Our theory is valid
for electrolytes where both ions are mobile, and it accounts for voltage and concentration differences not only on
the macroscopic scale of the full electrode, but also on the local scale of the DL. The model is simple enough to
allow us to derive analytical approximations for the steady-state and early transients. We also present numerical
solutions to validate the analysis and to illustrate the evolution of ion densities, pore potential, surface charge,
and reaction rates in response to an applied voltage
Diffuse large B-cell lymphoma with concordant bone marrow involvement has peculiar genomic profile and poor clinical outcome.
Origins of Photoluminescence Decay Kinetics in CdTe Colloidal Quantum Dots
Recent experimental studies have identified at least two nonradiative components in the fluorescence decay of solutions of CdTe colloidal quantum dots (CQDs). The lifetimes reported by different groups, however, differed by orders of magnitude, raising the question of whether different types of traps were at play in the different samples and experimental conditions and even whether different types of charge carriers were involved in the different trapping processes. Considering that the use of these nanomaterials in biology, optoelectronics, photonics, and photovoltaics is becoming widespread, such a gap in our understanding of carrier dynamics in these systems needs addressing. This is what we do here. Using the state-of-the-art atomistic semiempirical pseudopotential method, we calculate trapping times and nonradiative population decay curves for different CQD sizes considering up to 268 surface traps. We show that the seemingly discrepant experimental results are consistent with the trapping of the hole at unsaturated Te bonds on the dot surface in the presence of different dielectric environments. In particular, the observed increase in the trapping times following air exposure is attributed to the formation of an oxide shell on the dot surface, which increases the dielectric constant of the dot environment. Two types of traps are identified, depending on whether the unsaturated bond is single (type I) or part of a pair of dangling bonds on the same Te atom (type II). The energy landscape relative to transitions to these traps is found to be markedly different in the two cases. As a consequence, the trapping times associated with the different types of traps exhibit a strikingly contrasting sensitivity to variations in the dot environment. Based on these characteristics, we predict the presence of a sub-nanosecond component in all photoluminescence decay curves of CdTe CQDs in the size range considered here if both trap types are present. The absence of such a component is attributed to the suppression of type I traps
- …
