32 research outputs found
Emergence of chaotic scattering in ultracold Er and Dy
We show that for ultracold magnetic lanthanide atoms chaotic scattering
emerges due to a combination of anisotropic interaction potentials and Zeeman
coupling under an external magnetic field. This scattering is studied in a
collaborative experimental and theoretical effort for both dysprosium and
erbium. We present extensive atom-loss measurements of their dense magnetic
Feshbach resonance spectra, analyze their statistical properties, and compare
to predictions from a random-matrix-theory inspired model. Furthermore,
theoretical coupled-channels simulations of the anisotropic molecular
Hamiltonian at zero magnetic field show that weakly-bound, near threshold
diatomic levels form overlapping, uncoupled chaotic series that when combined
are randomly distributed. The Zeeman interaction shifts and couples these
levels, leading to a Feshbach spectrum of zero-energy bound states with
nearest-neighbor spacings that changes from randomly to chaotically distributed
for increasing magnetic field. Finally, we show that the extreme temperature
sensitivity of a small, but sizeable fraction of the resonances in the Dy and
Er atom-loss spectra is due to resonant non-zero partial-wave collisions. Our
threshold analysis for these resonances indicates a large collision-energy
dependence of the three-body recombination rate