4,084 research outputs found

    Early-type Galaxies in the Cluster Abell 2390 at z=0.23

    Full text link
    To examine the evolution of the early-type galaxy population in the rich cluster Abell 2390 at z=0.23 we have gained spectroscopic data of 51 elliptical and lenticular galaxies with MOSCA at the 3.5 m telescope on Calar Alto Observatory. This investigation spans both a broad range in luminosity (-19.3>M_B>-22.3) and uses a wide field of view of 10'x10', therefore the environmental dependence of different formation scenarios can be analysed in detail as a function of radius from the cluster centre. Here we present results on the surface brightness modelling of galaxies where morphological and structural information is available in the F814W filter aboard the Hubble Space Telescope (HST) and investigate for this subsample the evolution of the Fundamental Plane.Comment: 5 pages, 5 figures, to appear in "Carnegie Observatories Astrophysics Series, Vol. 3: Clusters of Galaxies: Probes of Cosmological Structure and Galaxy Evolution", ed. J. S. Mulchaey, A. Dressler, and A. Oemler (Pasadena: Carnegie Observatories, http://www.ociw.edu/ociw/symposia/series/symposium3/proceedings.html

    Astrometric Discovery of GJ 164B

    Full text link
    We discovered a low-mass companion to the M-dwarf GJ 164 with the CCD-based imaging system of the Stellar Planet Survey (STEPS) astrometric program. The existence of GJ 164B was confirmed with Hubble Space Telescope NICMOS imaging observations. A high-dispersion spectral observation in V sets a lower limit of delta m> 2.2 mag between the two components of the system. Based upon our parallax value of 0.082 +/- 0.008, we derive the following orbital parameters: P = 2.04 +/- 0.03 y, a = 1.03 +/- 0.03 AU, and Mtotal = 0.265 +/- 0.020 MSun. The component masses are MA = 0.170 +/- 0.015 MSun and MB = 0.095 +/- 0.015 MSun. Based on its mass, colors, and spectral properties, GJ 164B has spectral type M6-8 V.Comment: pdf file 14 pages with 6 fig

    Photo-autotrophic Production of Poly(hydroxyalkanoates) in Cyanobacteria

    Get PDF
    In the last two decades, poly(hydroxyalkanoates) (PHA) were solely produced using heterotrophic bacteria in aerobic cultivation. With respect to the great potential (500 Mt yr–1) of raw industrial CO2 streams and even greater potential of flue gases, the focus on photo-autotrophic biotechnological processes is increasing steadily. Primarily, PHA-gene transfer from heterotrophic bacteria into algae and plant cells was attempted, with the intention to combine the known biosynthesis pathway with autotrophic cultivation. The natural occurrence of PHA in cyanobacteria is known at least since 1966. However, cyanobacteria were never considered for commercial production because the PHA amount based on cell mass and based on volumetric productivity is generally very low. Therefore, strain improvements were suggested, either by gene amplification or by suppression of biochemical pathways competing for the cell’s acetate pool. In the late 1990s, the success of genetic modification was confirmed experimentally, elevating the cyanobacteria cell’s PHA content. With additional optimization, PHB amounts up to 50 % w/w of biomass dry matter or up to about 2.4 g L–1 bioreactor volume could be produced within 11 days. Considering the land use for agriculture and the competition for plant biomass between food, feed, fuel and energy production, the binding of CO2 in a biotechnological process using photo-autotrophic microorganisms may become a promising option

    CLASH-VLT: Strangulation of cluster galaxies in MACSJ0416.1-2403 as seen from their chemical enrichment

    Get PDF
    (abridged) We explore the Frontier Fields cluster MACS J0416.1-2403 at z=0.3972 with VIMOS/VLT spectroscopy from the CLASH-VLT survey covering a region which corresponds to almost three virial radii. We measure fluxes of 5 emission lines of 76 cluster members enabling us to unambiguously derive O/H gas metallicities, and also SFRs from Halpha. For intermediate massses we find a similar distribution of cluster and field galaxies in the MZR and mass vs. sSFR diagrams. Bulge-dominated cluster galaxies have on average lower sSFRs and higher O/Hs compared to their disk-dominated counterparts. We use the location of galaxies in the projected velocity vs. position phase-space to separate our cluster sample into a region of objects accreted longer time ago and a region of recently accreted and infalling galaxies. We find a higher fraction of accreted metal-rich galaxies (63%) compared to the fraction of 28% of metal-rich galaxies in the infalling regions. Intermediate mass galaxies falling into the cluster for the first time are found to be in agreement with predictions of the fundamental metallicity relation. In contrast, for already accreted star-forming galaxies of similar masses, we find on average metallicities higher than predicted by the models. This trend is intensified for accreted cluster galaxies of the lowest mass bin, that display metallicities 2-3 times higher than predicted by models with primordial gas inflow. Environmental effects therefore strongly influence gas regulations and control gas metallicities of log(M/Msun)<10.2 (Salpeter IMF) cluster galaxies. We also investigate chemical evolutionary paths of model galaxies with and without inflow of gas showing that strangulation is needed to explain the higher metallicities of accreted cluster galaxies. Our results favor a strangulation scenario in which gas inflow stops for log(M/Msun)<10.2 galaxies when accreted by the cluster.Comment: Version better matched to the published version, including table with observed and derived quantities for the 76 cluster galaxie

    HERschel Observations of Edge-on Spirals (HEROES). II: Tilted-ring modelling of the atomic gas disks

    Get PDF
    Context. Edge-on galaxies can offer important insights in galaxy evolution as they are the only systems where the distribution of the different components can be studied both radially and vertically. The HEROES project was designed to investigate the interplay between the gas, dust, stars and dark matter (DM) in a sample of 7 massive edge-on spiral galaxies. Aims. In this second HEROES paper we present an analysis of the atomic gas content of 6 out of 7 galaxies in our sample. The remaining galaxy was recently analysed according to the same strategy. The primary aim of this work is to constrain the surface density distribution, the rotation curve and the geometry of the gas disks in a homogeneous way. In addition we identify peculiar features and signs of recent interactions. Methods. We construct detailed tilted-ring models of the atomic gas disks based on new GMRT 21-cm observations of NGC 973 and UGC 4277 and re-reduced archival HI data of NGC 5907, NGC 5529, IC 2531 and NGC 4217. Potential degeneracies between different models are resolved by requiring a good agreement with the data in various representations of the data cubes. Results. From our modelling we find that all but one galaxy are warped along the major axis. In addition, we identify warps along the line of sight in three galaxies. A flaring gas layer is required to reproduce the data only for one galaxy, but (moderate) flares cannot be ruled for the other galaxies either. A coplanar ring-like structure is detected outside the main disk of NGC 4217, which we suggest could be the remnant of a recent minor merger event. We also find evidence for a radial inflow of 15 +- 5 km/s in the disk of NGC 5529, which might be related to the ongoing interaction with two nearby companions. (Abridged)Comment: 39 pages, 38 figures, Accepted for publication in Astronomy & Astrophysic

    Using Citizen Science to Help Monitor Urban Landscape Changes and Drive Improvements

    Get PDF
    Citizen Science has become a vital source for data collection when the spatial and temporal extent of a project makes it too expensive to send experts into the field. However, involving citizens can go further than that – participatory projects focusing on subjective parameters can fill in the gap between local community needs and stakeholder approaches to tackle key social and environmental issues. LandSense, a Horizon 2020 project that is deeply rooted in environmental challenges and solutions, aims to establish a citizen observatory that will provide data to stakeholders, from researchers to businesses. Within this project, a mobile application has been developed that aims not only to stimulate civic engagement to monitor changes within the urban environment, but also to enable users to drive improvements by providing city planners with information about the public perception of urban spaces. The launch of a public version of such an app requires preparation and testing by focus groups. Recently, a prototype of the app was used by both staff and students from Vienna University of Technology, who contributed valuable insights to help enhance this citizen science tool for engaging and empowering the inhabitants of the city
    corecore