360 research outputs found
Development of a Breeders’ Toolkit for Drought Resistance in a \u3cem\u3eLolium/Festuca\u3c/em\u3e Hybrid
Lolium multiflorum (Lm) is considered an ideal grass for European agriculture. However, existing high-quality forage Lm cultivars have been bred for intensive systems in benign environments, and have proved to be insufficiently robust to meet many of the environmental challenges that face extensive agriculture in more extreme conditions. Genes for persistency, tolerance of cold, drought and poor soils, can be found in currently under-exploited native Festuca ecotypes. These Festuca ecotypes cannot however compare with Lm cultivars for productivity or quality of forage under favourable conditions. Festuca glaucescens (Fg) is of Mediterranean origin and as such is adapted to drought and heat stress. The object of this work was to introgress a single chromosome segment of Fg containing genes for drought resistance into a diploid Lm background. Subsequent to the introgression of a Fg chromosome segment, Fg markers were mapped and a prototype toolkit developed to follow the genes for drought resistance through a breeding programme
The Identification of Genetic Synteny Between \u3ci\u3eLolium Perenne\u3c/i\u3e Chromosome 7 and Rice Chromosome 6 Genomic Regions that have Major Effects on Heading-Date
Comparative genetic mapping between plant species has established that there has been a conservation of genomic organisation which reflects evolutionary relationships. The genetic mapping of L. perenne has identified such syntenic relationships with both the Triticeae and rice. The recent publication of the complete sequence of the rice genome has allowed these relationships to be analysed more closely and has raised the possibility of using the rice genome as a template for chromosome landing-based gene identification in related non-model species. The aim of the present work was to map particular markers and genes associated with heading-date in rice in L. perenne in order to test this comparative genomics approach
Mapping Water-Soluble Carbohydrate Content in Perennial Ryegrass
Perennial ryegrass (Lolium perenne L.) is the main species used in UK agriculture and shows considerable genetic variation for water-soluble carbohydrate (WSC) content (Humphreys, 1989, Turner et al., 2001, 2002). High-sugar grasses have already proved useful in UK livestock production (Miller et al., 2001), but can be unpredictable in the field. Increased understanding of carbon partitioning in ryegrass would benefit future breeding programmes
Approaches for Associating Molecular Polymorphisms with Phenotypic Traits Based on Linkage Disequilibrium in Natural Populations of \u3cem\u3eLolium Perenne\u3c/em\u3e
Association mapping relies on linkage disequilibrium (LD) between haplotypes and quantitative trait loci (QTL). The level of LD in a genome determines the resolution of this approach. In out-breeding species, LD is expected to decay rapidly, thus allowing for high-resolution mapping. It has been most extensively used in human genetics, but recent work with maize populations has demonstrated its potential in plants (Thornsberry et al., 2001; Wilson et al., 2004), and used in L. perenne to identify AFLP markers associated with a major QTL for heading date on linkage group 7 (Skøt et al., 2004). The objective of the present work is to associate allelic variation in candidate genes for heading date and water soluble carbohydrates (WSC) in natural populations of L. perenne with phenotypic variation. Both these traits are important breeding targets in ryegrass
Introgression Mapping in The Grasses
Key points Lolium perenne/Festuca pratensis hybrids and their derivatives provide an ideal system for intergeneric introgression. The Lolium perenne/Festuca pratensis system is being exploited to elucidate genome organisation in the grasses, determination of the genetic control of target traits and the isolation of markers for MAS in breeding programmes. The potential of the system as an aid to contig the Lolium and Festuca genomes and for gene isolation is discussed
Genetic analysis of adaptation differences between highland and lowland tropical maize using molecular markers
Molecular-marker loci were used to investigate
the adaptation differences between highland and
lowland tropical maize. An F2 population from the cross
of two inbred lines independently derived from highland
and lowland maize germplasm was developed, and extracted
F3:4 lines were phenotype in replicated field trials
at four thermally diverse tropical testing sites, ranging
from lowland to extreme highland (mean growing season
temperature range 13.2–24.6°C). Traits closely related
with adaptation, such as biomass and grain yield, yield
components, days from sowing to male and female flowering,
total leaf number, plant height and number of primary
tassel branches (TBN), were analyzed. A large line
´ environment interaction was observed for most traits.
The genetic basis of this interaction was reflected by significant,
but systematic, changes from lowland to highland
sites in the correlation between the trait value and
genomic composition (designated by the proportion of
marker alleles with the same origin). Joint analysis of
quantitative trait loci (QTLs) over sites detected 5–8
QTLs for each trait (except disease scores, with data only
from one site). With the exception of one QTL for
TBN, none of these accounted for more than 15% of the
total phenotypic variation. In total, detected QTLs accounted
for 24–61% of the variation at each site on average.
For yield, yield components and disease scores, alleles
generally favored the site of origin. Highland-derived
alleles had little effect at lowland sites, while lowland-
derived alleles showed relatively broader adaptation.
Gradual changes in the estimated QTL effects with
increasing mean site temperature were observed, and
paralleled the observed patterns of adaptation in high land and lowland germplasm. Several clusters of QTLs
for different traits reflected the relative importance in the
adaptation differences between the two germplasm types,
and pleiotropy is suggested as the main cause for the
clustering. Breeding for broad thermal adaptation should
be possible by pooling genes showing adaptation to specific
thermal regimes, though perhaps at the expense of
reduced progress for adaptation to a specific site. Molecular
marker-assisted selection would be an ideal tool for
this task, since it could greatly reduce the linkage drag
caused by the unintentional transfer of undesirable trait
Serious fungal infections in Portugal
There is a lack of knowledge on the epidemiology of fungal infections worldwide because there are no reporting obligations. The aim of this study was to estimate the burden of fungal disease in Portugal as part of a global fungal burden project. Most published epidemiology papers reporting fungal infection rates from Portugal were identified. Where no data existed, specific populations at risk and fungal infection frequencies in those populations were used in order to estimate national incidence or prevalence, depending on the condition. An estimated 1,510,391 persons develop a skin or nail fungal infection each year. The second most common fungal infection in Portugal is recurrent vulvovaginal candidiasis, with an estimated 150,700 women (15-50 years of age) suffering from it every year. In human immunodeficiency virus (HIV)-infected people, oral or oesophageal candidiasis rates were estimated to be 19.5 and 16.8/100,000, respectively. Candidaemia affects 2.19/100,000 patients, in a total of 231 cases nationally. Invasive aspergillosis is less common than in other countries as chronic obstructive pulmonary disease (COPD) is uncommon in Portugal, a total of 240 cases annually. The estimated prevalence of chronic pulmonary aspergillosis after tuberculosis (TB) is 194 cases, whereas its prevalence for all underlying pulmonary conditions was 776 patients. Asthma is common (10% in adults) and we estimate 16,614 and 12,600 people with severe asthma with fungal sensitisation and allergic bronchopulmonary aspergillosis, respectively. Sixty-five patients develop Pneumocystis pneumonia in acquired immune deficiency syndrome (AIDS) and 13 develop cryptococcosis. Overall, we estimate a total number of 1,695,514 fungal infections starting each year in Portugal.info:eu-repo/semantics/publishedVersio
Neonatal cerebrovascular autoregulation.
Cerebrovascular pressure autoregulation is the physiologic mechanism that holds cerebral blood flow (CBF) relatively constant across changes in cerebral perfusion pressure (CPP). Cerebral vasoreactivity refers to the vasoconstriction and vasodilation that occur during fluctuations in arterial blood pressure (ABP) to maintain autoregulation. These are vital protective mechanisms of the brain. Impairments in pressure autoregulation increase the risk of brain injury and persistent neurologic disability. Autoregulation may be impaired during various neonatal disease states including prematurity, hypoxic-ischemic encephalopathy (HIE), intraventricular hemorrhage, congenital cardiac disease, and infants requiring extracorporeal membrane oxygenation (ECMO). Because infants are exquisitely sensitive to changes in cerebral blood flow (CBF), both hypoperfusion and hyperperfusion can cause significant neurologic injury. We will review neonatal pressure autoregulation and autoregulation monitoring techniques with a focus on brain protection. Current clinical therapies have failed to fully prevent permanent brain injuries in neonates. Adjuvant treatments that support and optimize autoregulation may improve neurologic outcomes
Superior Neuroprotective Efficacy of LAU-0901, a Novel Platelet-Activating Factor Antagonist, in Experimental Stroke
Platelet-activating factor (PAF) accumulates during cerebral ischemia, and inhibition of this process plays a critical role in neuronal survival. Recently, we demonstrated that LAU-0901, a novel PAF receptor antagonist, is neuroprotective in experimental stroke. We used magnetic resonance imaging in conjunction with behavior and immunohistopathology to expand our understanding of this novel therapeutic approach. Sprague–Dawley rats received 2 h middle cerebral artery occlusion (MCAo) and were treated with LAU-0901 (60 mg/kg) or vehicle 2 h from MCAo onset. Behavioral function, T2-weighted imaging (T2WI), and apparent diffusion coefficients were performed on days 1, 3, and 7 after MCAo. Infarct volume and number of GFAP, ED-1, and NeuN-positive cells were conducted on day 7. Behavioral deficit was significantly improved by LAU-0901 treatment compared to vehicle on days 1, 3, and 7. Total lesion volumes computed from T2WI were significantly reduced by LAU-0901 on days 1, 3, and 7 (by 83%, 90%, and 96%, respectively), which was consistent with decreased edema formation. Histopathology revealed that LAU-0901 treatment resulted in significant reduction of cortical and subcortical infarct volumes, attenuated microglial infiltration, and promoted astrocytic and neuronal survival. These findings suggest LAU-0901 is a promising neuroprotectant and provide the basis for future therapeutics in patients suffering ischemic stroke
Differential responses of osteoblasts and macrophages upon Staphylococcus aureus infection
Background
Staphylococcus aureus (S. aureus) is one of the primary causes of bone infections which are often chronic and difficult to eradicate. Bacteria like S. aureus may survive upon internalization in cells and may be responsible for chronic and recurrent infections. In this study, we compared the responses of a phagocytic cell (i.e. macrophage) to a non-phagocytic cell (i.e. osteoblast) upon S. aureus internalization. Results
We found that upon internalization, S. aureus could survive for up to 5 and 7 days within macrophages and osteoblasts, respectively. Significantly more S. aureus was internalized in macrophages compared to osteoblasts and a significantly higher (100 fold) level of live intracellular S. aureus was detected in macrophages compared to osteoblasts. However, the percentage of S. aureus survival after infection was significantly lower in macrophages compared to osteoblasts at post-infection days 1–6. Interestingly, macrophages had relatively lower viability in shorter infection time periods (i.e. 0.5-4 h; significant at 2 h) but higher viability in longer infection time periods (i.e. 6–8 h; significant at 8 h) compared to osteoblasts. In addition, S. aureusinfection led to significant changes in reactive oxygen species production in both macrophages and osteoblasts. Moreover, infected osteoblasts had significantly lower alkaline phosphatase activity at post-infection day 7 and infected macrophages had higher phagocytosis activity compared to non-infected cells. Conclusions
S. aureus was found to internalize and survive within osteoblasts and macrophages and led to differential responses between osteoblasts and macrophages. These findings may assist in evaluation of the pathogenesis of chronic and recurrent infections which may be related to the intracellular persistence of bacteria within host cells
- …