2,087 research outputs found
Metazoans evolved by taking domains from soluble proteins to expand intercellular communication network.
A central question in animal evolution is how multicellular animals evolved from unicellular ancestors. We hypothesize that membrane proteins must be key players in the development of multicellularity because they are well positioned to form the cell-cell contacts and to provide the intercellular communication required for the creation of complex organisms. Here we find that a major mechanism for the necessary increase in membrane protein complexity in the transition from non-metazoan to metazoan life was the new incorporation of domains from soluble proteins. The membrane proteins that have incorporated soluble domains in metazoans are enriched in many of the functions unique to multicellular organisms such as cell-cell adhesion, signaling, immune defense and developmental processes. They also show enhanced protein-protein interaction (PPI) network complexity and centrality, suggesting an important role in the cellular diversification found in complex organisms. Our results expose an evolutionary mechanism that contributed to the development of higher life forms
Rampant exchange of the structure and function of extramembrane domains between membrane and water soluble proteins.
Of the membrane proteins of known structure, we found that a remarkable 67% of the water soluble domains are structurally similar to water soluble proteins of known structure. Moreover, 41% of known water soluble protein structures share a domain with an already known membrane protein structure. We also found that functional residues are frequently conserved between extramembrane domains of membrane and soluble proteins that share structural similarity. These results suggest membrane and soluble proteins readily exchange domains and their attendant functionalities. The exchanges between membrane and soluble proteins are particularly frequent in eukaryotes, indicating that this is an important mechanism for increasing functional complexity. The high level of structural overlap between the two classes of proteins provides an opportunity to employ the extensive information on soluble proteins to illuminate membrane protein structure and function, for which much less is known. To this end, we employed structure guided sequence alignment to elucidate the functions of membrane proteins in the human genome. Our results bridge the gap of fold space between membrane and water soluble proteins and provide a resource for the prediction of membrane protein function. A database of predicted structural and functional relationships for proteins in the human genome is provided at sbi.postech.ac.kr/emdmp
Quantificando os efeitos do aquecimento global e das condições socioeconômicas locais na transmissão de malária
OBJETIVO: Apresenta-se um modelo matemático mostrando como esse instrumento pode ser importante para descrever a transmissão de malária. MÉTODOS: Baseado no modelo proposto previamente, foram quantificados os efeitos de dois fatores que podem afetar a transmissão da malaria: a temperatura ambiente e as condições socioeconômicas locais. RESULTADOS/CONCLUSÕES: A quantificação foi feita estudando o modelo proposto no estado estacionário e na sua dinâmica. Dependendo do nÃvel de risco de malária, os principais efeitos na transmissão de malária são devidos à temperatura ambiente ou à s condições socioeconômicas.OBJECTIVE: To show how a mathematical model can be used to describe and to understand the malaria transmission. METHODS: The effects on malaria transmission due to the impact of the global temperature changes and prevailing social and economic conditions in a community were assessed based on a previously presented compartmental model, which describes the overall transmission of malaria. RESULTS/CONCLUSIONS: The assessments were made from the scenarios produced by the model both in steady state and dynamic analyses. Depending on the risk level of malaria, the effects on malaria transmission can be predicted by the temperature ambient or local social and-economic conditions
Influences of an impurity on the transport properties of one-dimensional antisymmetric spin filter
The influences of an impurity on the spin and the charge transport of
one-dimensional antisymmetric spin filter are investigated using bosonization
and Keldysh formulation and the results are highlighted against those of
spinful Luttinger liquids. Due to the dependence of the electron spin
orientation on wave number the spin transport is not affected by the impurity,
while the charge transport is essentially identical with that of spinless
one-dimensional Luttinger liquid.Comment: 7 pages, 2 figures. To appear in Physical Review
Chaotic inflation in Jordan frame supergravity
We consider the inflationary scenario with non-minimal coupling in 4D Jordan
frame supergravity. We find that there occurs a tachyonic instability along the
direction of the accompanying non-inflaton field in generic Jordan frame
supergravity models. We propose a higher order correction to the Jordan frame
function for solving the tachyonic mass problem and show that the necessary
correction can be naturally generated by the heavy thresholds without spoiling
the slow-roll conditions. We discuss the implication of the result on the Higgs
inflation in NMSSM.Comment: 16 pages, no figures, version to be published in JCA
- …