13 research outputs found

    Toll-like receptor 2 contributes to chemokine gene expression and macrophage infiltration in the dorsal root ganglia after peripheral nerve injury

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We have previously reported that nerve injury-induced neuropathic pain is attenuated in toll-like receptor 2 (TLR2) knock-out mice. In these mice, inflammatory gene expression and spinal cord microglia actvation is compromised, whereas the effects in the dorsal root ganglia (DRG) have not been tested. In this study, we investigated the role of TLR2 in inflammatory responses in the DRG after peripheral nerve injury.</p> <p>Results</p> <p>L5 spinal nerve transection injury induced the expression of macrophage-attracting chemokines such as CCL2/MCP-1 and CCL3/MIP-1 and subsequent macrophage infiltration in the DRG of wild-type mice. In TLR2 knock-out mice, however, the induction of chemokine expression and macrophage infiltration following nerve injury were markedly reduced. Similarly, the induction of IL-1β and TNF-α expression in the DRG by spinal nerve injury was ameliorated in TLR2 knock-out mice. The reduced inflammatory response in the DRG was accompanied by attenuation of nerve injury-induced spontaneous pain hypersensitivity in TLR2 knock-out mice.</p> <p>Conclusions</p> <p>Our data show that TLR2 contributes to nerve injury-induced proinflammatory chemokine/cytokine gene expression and macrophage infiltration in the DRG, which may have relevance in the reduced pain hypersensitivity in TLR2 knock-out mice after spinal nerve injury.</p

    Sexual dimorphism in cognitive disorders in a murine model of neuropathic pain

    Get PDF
    Background A sex-difference in susceptibility to chronic pain is well-known. Although recent studies have begun to reveal the sex-dependent mechanisms of nerve injury-induced pain sensitization, sex differences in the affective and cognitive brain dysfunctions associated with chronic pain have not been investigated. Therefore, we tested whether chronic pain leads to affective and cognitive disorders in a mouse neuropathic pain model and whether those disorders are sexually dimorphic. Methods Chronic neuropathic pain was induced in male and female mice by L5 spinal nerve transection (SNT) injury. Pain sensitivity was measured with the von Frey test. Affective behaviors such as depression and anxiety were assessed by the forced swim, tail suspension, and open field tests. Cognitive brain function was assessed with the Morris water maze and the novel object location and novel object recognition tests. Results Mechanical allodynia was induced and maintained for up to 8 weeks after SNT in both male and female mice. Depressive- and anxiety-like behaviors were observed 8 weeks post-SNT injury regardless of sex. Chronic pain-induced cognitive deficits measured with the Morris water maze and novel object location test were seen only in male mice, not in female mice. Conclusions Chronic neuropathic pain is accompanied by anxiety- and depressive-like behaviors in a mouse model regardless of sex, and male mice are more vulnerable than female mice to chronic pain-associated cognitive deficits.This work was supported by the Samsung Science & Technology Foundation (SSTF-BA1502-13), and WS was supported with a postdoctoral fellowship from the National Research Foundation funded by the Korean Government (NRF-2016935834)

    Toxoplasma gondii Infection in the Brain Inhibits Neuronal Degeneration and Learning and Memory Impairments in a Murine Model of Alzheimer's Disease

    Get PDF
    Immunosuppression is a characteristic feature of Toxoplasma gondii-infected murine hosts. The present study aimed to determine the effect of the immunosuppression induced by T. gondii infection on the pathogenesis and progression of Alzheimer's disease (AD) in Tg2576 AD mice. Mice were infected with a cyst-forming strain (ME49) of T. gondii, and levels of inflammatory mediators (IFN-γ and nitric oxide), anti-inflammatory cytokines (IL-10 and TGF-β), neuronal damage, and β-amyloid plaque deposition were examined in brain tissues and/or in BV-2 microglial cells. In addition, behavioral tests, including the water maze and Y-maze tests, were performed on T. gondii-infected and uninfected Tg2576 mice. Results revealed that whereas the level of IFN-γ was unchanged, the levels of anti-inflammatory cytokines were significantly higher in T. gondii-infected mice than in uninfected mice, and in BV-2 cells treated with T. gondii lysate antigen. Furthermore, nitrite production from primary cultured brain microglial cells and BV-2 cells was reduced by the addition of T. gondii lysate antigen (TLA), and β-amyloid plaque deposition in the cortex and hippocampus of Tg2576 mouse brains was remarkably lower in T. gondii-infected AD mice than in uninfected controls. In addition, water maze and Y-maze test results revealed retarded cognitive capacities in uninfected mice as compared with infected mice. These findings demonstrate the favorable effects of the immunosuppression induced by T. gondii infection on the pathogenesis and progression of AD in Tg2576 mice

    TLR4 enhances histamine-mediated pruritus by potentiating TRPV1 activity

    Get PDF
    Background Recent studies have indicated that Toll-like receptor 4 (TLR4), a pathogen-recognition receptor that triggers inflammatory signals in innate immune cells, is also expressed on sensory neurons, implicating its putative role in sensory signal transmission. However, the possible function of sensory neuron TLR4 has not yet been formally addressed. In this regard, we investigated the role of TLR4 in itch signal transmission. Results TLR4 was expressed on a subpopulation of dorsal root ganglia (DRG) sensory neurons that express TRPV1. In TLR4-knockout mice, histamine-induced itch responses were compromised while TLR4 activation by LPS did not directly elicit an itch response. Histamine-induced intracellular calcium signals and inward currents were comparably reduced in TLR4-deficient sensory neurons. Reduced histamine sensitivity in the TLR4-deficient neurons was accompanied by a decrease in TRPV1 activity. Heterologous expression experiments in HEK293T cells indicated that TLR4 expression enhanced capsaicin-induced intracellular calcium signals and inward currents. Conclusions Our data show that TLR4 on sensory neurons enhances histamine-induced itch signal transduction by potentiating TRPV1 activity. The results suggest that TLR4 could be a novel target for the treatment of enhanced itch sensation

    Evaluation of learning and memory using the Y-maze test.

    No full text
    <p>Tg2576 and wild type mice with or without <i>T. gondii</i> infection were tested. A significant difference in success rates was observed between uninfected Tg2576 mice (Tg+PBS) and the other experimental groups (WT+PBS, WT+ME49, Tg+ME49) (P<0.01).</p

    Evaluation of learning and memory using the Morris water maze test.

    No full text
    <p>Differences in learning and memory between wild type (WT) and Tg2576 mice (TG) at 9 mo of age were examined using the Morris water maze test. (A) In a 60 s probe trial, the ability of uninfected (PBS-treated)-Tg2576 mice (TG+PBS) to find the training quadrant (zone 4, which contained the platform) was significantly less than those of mice in the other experimental groups (A; p<0.0001). On the other hand, <i>T. gondii</i>-infected Tg2576 mice (TG+ME49) performed as well as wild type mice (B). Representative swimming paths of mice during the probe trial (platform removed) were as follows (C); TG+PBS mice seemed unaware of the platform position, whereas TG+ME49 mice and wild-type mice (WT+PBS and WT+ME49) remained in the vicinity of the platform. The yellow box in the figure indicates the hidden platform.</p

    Deposition of beta-amyloid plaque in the brains of mice with or without <i>T. gondii</i> infection.

    No full text
    <p>Differences between β-amyloid deposit levels in <i>T. gondii</i>-infected and non-infected mice (PBS-treated mice) were examined in the cortex and hippocampus regions using Congo red and by immunohistochemical staining with 6E10 antibody. Congo red staining was performed on; uninfected (PBS-treated) wild type (A1), <i>T. gondii</i>-infected wild type (A2), uninfected Tg2576 (A3), and infected Tg2576 (A4) mouse groups. Wild type mice with or without <i>T. gondii</i> infection showed no amyloid plaque (A1, A2) at 9 mo after birth, whereas PBS-treated Tg2576 mice showed many Congo red-stained regions in the cortex (A3). However, no amyloid plaque was observed in <i>T. gondii</i> infected Tg2576 mouse brain tissues (A4). Immunostaining results of cortex and hippocampus concurred with Congo red findings (A5, A6, A7, A8). (×40, Scale bar = 200 µm).). In addition, numbers of plaques in cortex and hippocampus were counted using a color digital camera attached to a microscope and Image J software, and the results obtained showed that numbers of plaques were significantly less in the hippocampus and cortex of <i>T. gondii</i>-infected Tg2576 mice (B).</p
    corecore