95 research outputs found

    Progress in Studies on Rutaecarpine. II.—Synthesis and Structure-Biological Activity Relationships

    No full text
    Rutaecarpine is a pentacyclic indolopyridoquinazolinone alkaloid found in Evodia rutaecarpa and other related herbs. It has a variety of intriguing biological properties, which continue to attract the academic and industrial interest. Studies on rutaecarpine have included isolation from new natural sources, development of new synthetic methods for its total synthesis, the discovery of new biological activities, metabolism, toxicology, and establishment of analytical methods for determining rutaecarpine content. The present review focuses on the synthesis, biological activities, and structure-activity relationships of rutaecarpine derivatives, with respect to their antiplatelet, vasodilatory, cytotoxic, and anticholinesterase activities

    Thalidomide Attenuates Mast Cell Activation by Upregulating SHP-1 Signaling and Interfering with the Action of CRBN

    No full text
    Allergy is a chronic inflammatory disease, and its incidence has increased worldwide in recent years. Thalidomide, which was initially used as an anti-emetic drug but was withdrawn due to its teratogenic effects, is now used to treat blood cancers. Although the anti-inflammatory and immunomodulatory properties of thalidomide have been reported, little is known about its influence on the mast cell-mediated allergic reaction. In the present study, we aimed to evaluate the anti-allergic activity of thalidomide and the underlying mechanism using mouse bone marrow-derived mast cells (BMMCs) and passive cutaneous anaphylaxis (PCA) mouse models. Thalidomide markedly decreased the degranulation and release of lipid mediators and cytokines in IgE/Ag-stimulated BMMCs, with concurrent inhibition of FcεRI-mediated positive signaling pathways including Syk and activation of negative signaling pathways including AMP-activated protein kinase (AMPK) and SH2 tyrosine phosphatase-1 (SHP-1). The knockdown of AMPK or SHP-1 with specific siRNA diminished the inhibitory effects of thalidomide on BMMC activation. By contrast, the knockdown of cereblon (CRBN), which is the primary target protein of thalidomide, augmented the effects of thalidomide. Thalidomide reduced the interactions of CRBN with Syk and AMPK promoted by FcεRI crosslinking, thereby relieving the suppression of AMPK signaling and suppressing Syk signaling. Furthermore, oral thalidomide treatment suppressed the PCA reaction in mice. In conclusion, thalidomide suppresses FcεRI-mediated mast cell activation by activating the AMPK and SHP-1 pathways and antagonizing the action of CRBN, indicating that it is a potential anti-allergic agent

    Crystal structure of mimivirus uracil-DNA glycosylase.

    No full text
    Cytosine deamination induced by stresses or enzymatic catalysis converts deoxycytidine into deoxyuridine, thereby introducing a G to A mutation after DNA replication. Base-excision repair to correct uracil to cytosine is initiated by uracil-DNA glycosylase (UDG), which recognizes and eliminates uracil from DNA. Mimivirus, one of the largest known viruses, also encodes a distinctive UDG gene containing a long N-terminal domain (N-domain; residues 1-130) and a motif-I (residues 327-343), in addition to the canonical catalytic domain of family I UDGs (also called UNGs). To understand the structural and functional features of the additional segments, we have determined the crystal structure of UNG from Acanthamoeba polyphaga mimivirus (mvUNG). In the crystal structure of mvUNG, residues 95-130 in the N-domain bind to a hydrophobic groove in the catalytic domain, and motif-I forms a short β-sheet with a positively charged surface near the active site. Circular dichroism spectra showed that residues 1-94 are in a random coil conformation. Deletion of the three additional fragments reduced the activity and thermal stability, compared to full-length mvUNG. The results suggested that the mvUNG N-domain and motif-I are required for its structural and functional integrity

    Structural insights into the regulation of Bacillus subtilis SigW activity by anti-sigma RsiW.

    No full text
    Bacillus subtilis SigW is localized to the cell membrane and is inactivated by the tight interaction with anti-sigma RsiW under normal growth conditions. Whereas SigW is discharged from RsiW binding and thus initiates the transcription of its regulon under diverse stress conditions such as antibiotics and alkaline shock. The release and activation of SigW in response to extracytoplasmic signals is induced by the regulated intramembrane proteolysis of RsiW. As a ZAS (Zinc-containing anti-sigma) family protein, RsiW has a CHCC zinc binding motif, which implies that its anti-sigma activity may be regulated by the state of zinc coordination in addition to the proteolytic cleavage of RsiW. To understand the regulation mode of SigW activity by RsiW, we determined the crystal structures of SigW in complex with the cytoplasmic domain of RsiW, and compared the conformation of the CHCC motif in the reduced/zinc binding and the oxidized states. The structures revealed that RsiW inhibits the promoter binding of SigW by interacting with the surface groove of SigW. The interaction between SigW and RsiW is not disrupted by the oxidation of the CHCC motif in RsiW, suggesting that SigW activity might not be regulated by the zinc coordination states of the CHCC motif

    Circular dichroism (CD) spectra of mvUNGs.

    No full text
    <p>(a) Far-UV CD spectra of full-length mvUNG (Full) and mvUNG<sub>95-370</sub> (95–370). The two CD spectra show similar patterns and ellipticity scales, indicating that residues 1–94 of mvUNG are close to a random coil conformation. (b) Thermal melting curves. Melting curves were collected at a wavelength of 220 nm by increasing temperature to 90°C. Calculated T<sub>m</sub> values of full-length mvUNG, mvUNG<sub>95-370</sub>, mvUNG<sub>122-370</sub>, and mvUNG<sub>Δ327–343</sub> were 55.9, 51.5, 48.7, and 46.5°C, respectively, indicating that deletion of the additional segments decreased the thermal stability of mvUNG.</p
    • …
    corecore