17 research outputs found

    Change of voltage-gated potassium channel 1.7 expressions in monocrotaline-induced pulmonary arterial hypertension rat model

    Get PDF
    Purpose Abnormal potassium channels expression affects vessel function, including vascular tone and proliferation rate. Diverse potassium channels, including voltage-gated potassium (Kv) channels, are involved in pathological changes of pulmonary arterial hypertension (PAH). Since the role of the Kv1.7 channel in PAH has not been previously studied, we investigated whether Kv1.7 channel expression changes in the lung tissue of a monocrotaline (MCT)-induced PAH rat model and whether this change is influenced by the endothelin (ET)-1 and reactive oxygen species (ROS) pathways. Methods Rats were separated into 2 groups: the control (C) group and the MCT (M) group (60 mg/kg MCT). A hemodynamic study was performed by catheterization into the external jugular vein to estimate the right ventricular pressure (RVP), and pathological changes in the lung tissue were investigated. Changes in protein and mRNA levels were confirmed by western blot and polymerase chain reaction analysis, respectively. Results MCT caused increased RVP, medial wall thickening of the pulmonary arterioles, and increased expression level of ET-1, ET receptor A, and NADPH oxidase (NOX) 4 proteins. Decreased Kv1.7 channel expression was detected in the lung tissue. Inward-rectifier channel 6.1 expression in the lung tissue also increased. We confirmed that ET-1 increased NOX4 level and decreased glutathione peroxidase-1 level in pulmonary artery smooth muscle cells (PASMCs). ET-1 increased ROS level in PASMCs. Conclusion Decreased Kv1.7 channel expression might be caused by the ET-1 and ROS pathways and contributes to MCT-induced PAH

    Apoptosis and remodeling in adriamycin-induced cardiomyopathy rat model

    Get PDF
    PurposeThe mechanism for the pathogenesis of adriamycin (ADR)-induced cardiomyopathy is not yet known. Different hypotheses include the production of free radicals, an interaction between ADR and nuclear components, and a disruption in cardiac-specific gene expression. Apoptosis has also been proposed as being involved in cardiac dysfunction. The purpose of this study was to determine if apoptosis might play a role in ADR-induced cardiomyopathy.MethodsMale Sprague-Dawley rats were separated into 2 groups: the control group (C group) and the experimental group (ADR 5 mg/wk for 3 weeks through intraperitoneal injections; A group). Echocardiographic images were obtained at week 3. Changes in caspase-3, B-cell leukemia/lymphoma (Bcl)-2, Bcl-2-associated X (Bax), interleukin (IL)-6, tumor necrosis factor-α, brain natriuretic peptide (BNP), troponin I, collagen 1, and collagen 3 protein expression from the left ventricle tissues of C and A group rats were determined by Western blot.ResultsAscites and heart failure as well as left ventricular hypertrophy were noted in the A group. Ejection fraction and shortening fraction were significantly lower in the A group by echocardiography. The expression of caspase-3, Bax, IL-6, BNP, collagen 1, and collagen 3 were significantly higher in the A group as compared with the C group. Protein expression of Bcl-2 decreased significantly in the A group compared with the C group.ConclusionADR induced an upregulation of caspase-3, Bax, IL-6, and collagen, as well as a depression in Bcl-2. Thus, apoptosis and fibrosis may play an important role in ADR-induced cardiomyopathy

    The effect of sildenafil on right ventricular remodeling in a rat model of monocrotaline-induced right ventricular failure

    Get PDF
    PurposePulmonary arterial hypertension (PAH) leads to right ventricular failure (RVF) as well as an increase in pulmonary vascular resistance. Our purpose was to study the effect of sildenafil on right ventricular remodeling in a rat model of monocrotaline (MCT)-induced RVF.MethodsThe rats were distributed randomly into 3 groups. The control (C) group, the monocrotaline (M) group (MCT 60 mg/kg) and the sildenafil (S) group (MCT 60 mg/kg+ sildenafil 30 mg/kg/day for 28 days). Masson Trichrome staining was used for heart tissues. Western blot analysis and immunohistochemical staining were performed.ResultsThe mean right ventricular pressure (RVP) was significantly lower in the S group at weeks 1, 2, and 4. The number of intra-acinar arteries and the medial wall thickness of the pulmonary arterioles significantly lessened in the S group at week 4. The collagen content also decreased in heart tissues in the S group at week 4. Protein expression levels of B-cell lymphoma-2 (Bcl-2)-associated X, caspase-3, Bcl-2, interleukin (IL)-6, matrix metalloproteinase (MMP)-2, endothelial nitric oxide synthase (eNOS), endothelin (ET)-1 and ET receptor A (ERA) in lung tissues greatly decreased in the S group at week 4 according to immunohistochemical staining. According to Western blotting, protein expression levels of troponin I, brain natriuretic peptide, caspase-3, Bcl-2, tumor necrosis factor-α, IL-6, MMP-2, eNOS, ET-1, and ERA in heart tissues greatly diminished in the S group at week 4.ConclusionSildenafil alleviated right ventricular hypertrophy and mean RVP. These data suggest that sildenafil improves right ventricular function

    Changes of and genes in the left ventricle of spontaneously hypertensive rat after losartan treatment

    No full text
    Purpose Increased apoptosis was recently found in the hypertrophied left ventricle of spontaneously hypertensive rats (SHRs). Although the available evidence suggests that apoptosis can be induced in cardiac cells by various insults including pressure overload, cardiac apoptosis appears to result from an exaggerated local production of angiotensin in adult SHRs. Altered expressions of Bcl associated X (Bax), Bcl-2, chemokine receptor (CCR)-2, monocyte chemoattractant protein (MCP)-1, transforming growth factor (TGF)-β1, phosphorylated extracellular signal-regulated kinases (PERK), and connexin 43 proteins, and kallikrein mRNA were investigated to explore the effects of losartan on the SHR model. Methods Twelve-week-old male rats were grouped as follows: control (C), SHR (hypertension: H), and losartan (L; SHRs were treated with losartan [10 mg/kg/day] for 5 weeks). Western blot and reverse transcription polymerase chain reaction assays were performed. Results Expression of Bax, CCR-2, MCP-1, TGF-β1, PERK, and connexin 43 proteins, and kallikrein mRNA was significantly increased in the H group compared to that in the C group at weeks 3 and 5. Expression of Bax, CCR-2, MCP-1, TGF-β1, and connexin 43 proteins and kallikrein mRNA was significantly decreased after losartan treatment at week 5. PERK protein expression was significantly decreased after losartan treatment at weeks 3 and 5. Bcl-2 protein expression was significantly decreased in the H group compared to that in the C group at weeks 3 and 5. Conclusion Losartan treatment reduced expression of Bax, CCR-2, MCP-1, TGF-β1, PERK, and connexin 43 proteins, and kallikrein mRNA in SHRs, along with decreased inflammation and apoptosis

    The effect of sildenafil on right ventricular remodeling in a rat model of monocrotaline-induced right ventricular failure

    No full text
    PurposePulmonary arterial hypertension (PAH) leads to right ventricular failure (RVF) as well as an increase in pulmonary vascular resistance. Our purpose was to study the effect of sildenafil on right ventricular remodeling in a rat model of monocrotaline (MCT)-induced RVF.MethodsThe rats were distributed randomly into 3 groups. The control (C) group, the monocrotaline (M) group (MCT 60 mg/kg) and the sildenafil (S) group (MCT 60 mg/kg+ sildenafil 30 mg/kg/day for 28 days). Masson Trichrome staining was used for heart tissues. Western blot analysis and immunohistochemical staining were performed.ResultsThe mean right ventricular pressure (RVP) was significantly lower in the S group at weeks 1, 2, and 4. The number of intra-acinar arteries and the medial wall thickness of the pulmonary arterioles significantly lessened in the S group at week 4. The collagen content also decreased in heart tissues in the S group at week 4. Protein expression levels of B-cell lymphoma-2 (Bcl-2)-associated X, caspase-3, Bcl-2, interleukin (IL)-6, matrix metalloproteinase (MMP)-2, endothelial nitric oxide synthase (eNOS), endothelin (ET)-1 and ET receptor A (ERA) in lung tissues greatly decreased in the S group at week 4 according to immunohistochemical staining. According to Western blotting, protein expression levels of troponin I, brain natriuretic peptide, caspase-3, Bcl-2, tumor necrosis factor-α, IL-6, MMP-2, eNOS, ET-1, and ERA in heart tissues greatly diminished in the S group at week 4.ConclusionSildenafil alleviated right ventricular hypertrophy and mean RVP. These data suggest that sildenafil improves right ventricular function

    Identification of Novel Flavonoids and Ansa-Macrolides with Activities against <i>Leishmania donovani</i> through Natural Product Library Screening

    No full text
    The protozoan parasite Leishmania donovani is the causative agent of visceral leishmaniasis (VL), a potentially fatal disease if left untreated. Given the limitations of current therapies, there is an urgent need for new, safe, and effective drugs. To discover novel antileishmanial compounds from previously unexplored chemical spaces, we conducted a high-throughput screening (HTS) of 2562 natural compounds, assessing their activity against L. donovani promastigotes and intracellular amastigotes. Utilizing the criteria of ≥70% parasite growth inhibition and ≥70% host cell (THP-1) viability, we selected 100 inhibitors for half-maximal inhibitory concentration (IC50) value determination. Twenty-six compounds showed activities in both forms of Leishmania with a selectivity index of over 3. Clustering analysis resulted in four chemical clusters with scaffolds of lycorine (cluster 1), 5-hydroxy-9,10-dihydro-4H,8H-pyrano[2,3-f]chromene-4,8-dione (cluster 2), and semi-synthetic derivatives of ansamycin macrolide (cluster 4). The enantiomer of lycorine, BMD-NP-00820, showed the highest anti-amastigote activity with an IC50 value of 1.74 ± 0.27 μM and a selectivity index (SI) > 29. In cluster 3, the most potent compound had an IC50 value of 2.20 ± 0.29 μM with an SI > 23, whereas in cluster 4, with compounds structurally similar to the tuberculosis drug rifapentine, BMD-NP-02085 had an IC50 value of 1.76 ± 0.28 μM, but the SI value was 7.5. Taken together, the natural products identified from this study are a potential source for the discovery of antileishmanial chemotypes for further development

    Losartan Reduces Remodeling and Apoptosis in an Adriamycin-Induced Cardiomyopathy Rat Model

    No full text
    Background: The use of Adriamycin (ADR), also known as doxorubicin, as a chemotherapy agent is limited by its detrimental adverse effects, especially cardiotoxicity. Recent studies have emphasized the crucial role of angiotensin II (Ang-II) in the development of ADR-induced cardiomyopathy. This study aimed to explore the potential cardioprotective effects of losartan in a rat model of ADR-induced cardiomyopathy. Methods: Male Sprague-Dawley rats were randomly divided into 3 groups: a control group (group C), an ADR-treated group (ADR 5 mg/kg/wk for 3 weeks via intraperitoneal injections; group A), and co-treatment of ADR with losartan group (same dose of ADR and losartan; 10 mg/kg/day per oral for 3 weeks; group L). Western blot analysis was conducted to demonstrate changes in brain natriuretic peptide, collagen 1, tumor necrosis factor (TNF)-α, interleukin-6, matrix metalloproteinase (MMP)-2, B-cell leukemia/lymphoma (Bcl)- 2, Bcl-2-associated X (Bax), and caspase-3 protein expression levels in left ventricular (LV) tissues from each group. Results: Losartan administration reduced LV hypertrophy, collagen content, and the expression of pro-inflammatory factors TNF-α and MMP-2 in LV tissue. In addition, losartan led to a decrease in the expression of the pro-apoptotic proteins Bax and caspase-3 and an increase in the expression of the anti-apoptotic protein Bcl-2. Moreover, losartan treatment induced a reduction in the apoptotic area compared to group A. Conclusion: In an ADR-induced cardiomyopathy rat model, co-administration of ADR with losartan presented cardioprotective effects by attenuating LV hypertrophy, pro-inflammatory factors, and apoptosis in LV tissue

    Anti-leishmanial activity of Brevinin 2R and its Lauric acid conjugate type against L. major: In vitro mechanism of actions and in vivo treatment potentials.

    No full text
    Leishmaniasis, as a major health problem in tropical and sub-tropical areas in the world, needs novel, safe, nontoxic and plausible therapeutic solutions for its control. As a part of innate immune system, natural antimicrobial peptides have a potential to be used as new generation of antibiotics especially after persistent resistance of conventional antimicrobial agents. Brevinin 2R, a member of Defensin families of host defense peptides, showed promising effects against bacterial and fungal infections as well as cancerous cell lines. In the current research, the anti-leishmanial effect of Brevinin 2R and its lauric acid conjugate was investigated against Leishmania major (L. major) parasite. The data revealed that, conjugation of fatty acid to Brevinin 2R, strengthen its effect on L. major promastigotes as well as toxicity and hemolytic effect. These peptides showed anitleishmanial activity through cell membrane disruption and changes in the electrical and mitochondrial membrane potential. No signs of apoptosis induction or caspase activation were detected. Despite its hemolytic and cytotoxic effect in in vitro conditions, lauric acid- Brevinin 2R (L- Brevinin 2R) did not show site specific adverse reactions in animal model. Treatment course with L- Brevinin 2R in the L. major infected mice exhibited decreased parasite load in the lymph nodes adjacent to the infected site despite cytokine production profile and footpad swelling data

    Lipid Transporters: From Bacteria, Protozoa, Fungi and Plants, to Mice and Men

    No full text
    The tuberculosis drug candidate SQ109 targets the trehalose monomycolate transporter MmpL3 in Mycobacterium tuberculosis and also has activity against other pathogens. We found related proteins in 22 protozoa, including Trypanosoma cruzi and Entamoeba histolytica, as well as in archaea and other bacteria, including the fatty acid transporter, FarE. We show these proteins, alpha-MMPL proteins, adopt similar structures to that of MsMmpL3 having two sets (P1 and P2) of conserved active site/H+-transporter Asp, Tyr and Phe residues in “pentad” motifs (DYxxF) that can bind to the SQ109 ethylenediamine and adamantyl moieties. Based on structural comparisons with MsMmpL3, we find that there are superimposable transmembrane and H+-transporter structures in much larger proteins, beta-MMPLs, found in apicomplexan parasites, fungi, plants and animals. They also contain double “pentad” motifs in which the P1 Asp is totally conserved, but the P2 Asp may also be a Glu, and the P2 Phe seen in the alpha-MMPLs is a His that H-bonds to the P1 and P2 Asp/Glu residues. There are also 5 conserved Ser/Thr residues that extend the H-bond/H+-transporter network with 2 interacting directly with the P1 Asp, and the His. We propose that all MMPL proteins are involved in proton motive force-mediated lipid (phospholipid, glycolipid, sterol, fatty acid) transport, and that SQ109 may target some pathogens directly, by binding to the P1/P2 motifs. Overall, the results are of general interest since they indicate that there are two major classes of lipid transporters: alpha-MMPL proteins found in many bacteria and protozoa, and much larger, beta-MMPL proteins, found in fungi, apicomplexa, plants and animals and, in some cases, they are potential drug targets. </p
    corecore