2,482 research outputs found

    A New p53 Target Gene, RKIP, Is Essential for DNA Damage-Induced Cellular Senescence and Suppression of ERK Activation

    Get PDF
    Abstractp53, a strong tumor suppressor protein, is known to be involved in cellular senescence, particularly premature cellular senescence. Oncogenic stresses, such as Ras activation, can initiate p53-mediated senescence, whereas activation of the Ras-mitogen-activated protein kinase (MAPK) pathway can promote cell proliferation. These conflicting facts imply that there is a regulatory mechanism for balancing p53 and Ras-MAPK signaling. To address this, we evaluated the effects of p53 on the extracellular signal-regulated kinase (ERK) activation and found that p53 could suppress ERK activation through de novo synthesis. Through several molecular biologic analyses, we found that RKIP, an inhibitor of Raf kinase, is responsible for p53-mediated ERK suppression and senescence. Overexpression of RKIP can induce cellular senescence in several types of cell lines, including p53-deficient cells, whereas the elimination of RKIP by siRNA or forced expression of ERK blocks p53-mediated cellular senescence. These results suggested that RKIP is an essential protein for cellular senescence. Moreover, modification of the p53 serine 46 residue was critical for RKIP induction and ERK suppression as well as cellular senescence. These results indicated that RKIP is a novel p53 target gene that is responsible for p53-mediated cellular senescence and tumor suppressor protein expression

    Violacein: Properties and Production of a Versatile Bacterial Pigment

    Get PDF
    Violacein-producing bacteria, with their striking purple hues, have undoubtedly piqued the curiosity of scientists since their first discovery. The bisindole violacein is formed by the condensation of two tryptophan molecules through the action of five proteins. The genes required for its production, vio ABCDE, and the regulatory mechanisms employed have been studied within a small number of violacein-producing strains. As a compound, violacein is known to have diverse biological activities, including being an anticancer agent and being an antibiotic against Staphylococcus aureus and other Gram-positive pathogens. Identifying the biological roles of this pigmented molecule is of particular interest, and understanding violacein's function and mechanism of action has relevance to those unmasking any of its commercial or therapeutic benefits. Unfortunately, the production of violacein and its related derivatives is not easy and so various groups are also seeking to improve the fermentative yields of violacein through genetic engineering and synthetic biology. This review discusses the recent trends in the research and production of violacein by both natural and genetically modified bacterial strains.open0

    Structural basis for recognition of L-lysine, L-ornithine, and L-2,4-diamino butyric acid by lysine cyclodeaminase

    Get PDF
    L-pipecolic acid is a non-protein amino acid commonly found in plants, animals, and microorganisms. It is a well-known precursor to numerous microbial secondary metabolites and pharmaceuticals, including anticancer agents, immunosuppressants, and several antibiotics. Lysine cyclodeaminase (LCD) catalyzes ??-deamination of L-lysine into L-pipecolic acid using ??-nicotinamide adenine dinucleotide as a cofactor. Expression of a human homolog of LCD, ??-crystallin, is elevated in prostate cancer patients. To understand the structural features and catalytic mechanisms of LCD, we determined the crystal structures of Streptomyces pristinaespiralis LCD (SpLCD) in (i) a binary complex with NAD+, (ii) a ternary complex with NAD+ and L-pipecolic acid, (iii) a ternary complex with NAD+ and L-proline, and (iv) a ternary complex with NAD+ and L-2,4-diamino butyric acid. The overall structure of SpLCD was similar to that of ornithine cyclodeaminase from Pseudomonas putida. In addition, SpLCD recognized L-lysine, L-ornithine, and L-2,4-diamino butyric acid despite differences in the active site, including differences in hydrogen bonding by Asp236, which corresponds with Asp228 from Pseudomonas putida ornithine cyclodeaminase. The substrate binding pocket of SpLCD allowed substrates smaller than lysine to bind, thus enabling binding to ornithine and L-2,4-diamino butyric acid. Our structural and biochemical data facilitate a detailed understanding of substrate and product recognition, thus providing evidence for a reaction mechanism for SpLCD. The proposed mechanism is unusual in that NAD+ is initially converted into NADH and then reverted back into NAD+ at a late stage of the reaction

    Enabling Hard Constraints in Differentiable Neural Network and Accelerator Co-Exploration

    Full text link
    Co-exploration of an optimal neural architecture and its hardware accelerator is an approach of rising interest which addresses the computational cost problem, especially in low-profile systems. The large co-exploration space is often handled by adopting the idea of differentiable neural architecture search. However, despite the superior search efficiency of the differentiable co-exploration, it faces a critical challenge of not being able to systematically satisfy hard constraints such as frame rate. To handle the hard constraint problem of differentiable co-exploration, we propose HDX, which searches for hard-constrained solutions without compromising the global design objectives. By manipulating the gradients in the interest of the given hard constraint, high-quality solutions satisfying the constraint can be obtained.Comment: publisehd at DAC'2

    Unleashing the full potential of Hsp90 inhibitors as cancer therapeutics through simultaneous inactivation of Hsp90, Grp94, and TRAP1

    Get PDF
    Cancer therapeutics: Extending a drug's reach A new drug that blocks heat shock proteins (HSPs), helper proteins that are co-opted by cancer cells to promote tumor growth, shows promise for cancer treatment. Several drugs have targeted HSPs, since cancer cells are known to hijack these helper proteins to shield themselves from destruction by the body. However, the drugs have had limited success. Hye-Kyung Park and Byoung Heon Kang at Ulsan National Institutes of Science and Technology in South Korea and coworkers noticed that the drugs were not absorbed into mitochondria, a key cellular compartment, and HSPs in this compartment were therefore not being blocked. They identified a new HSP inhibitor that can reach every cellular compartment and inhibit all HSPs. Testing in mice showed that this inhibitor effectively triggered death of tumor cells, and therefore shows promise for anti-cancer therapy. The Hsp90 family proteins Hsp90, Grp94, and TRAP1 are present in the cell cytoplasm, endoplasmic reticulum, and mitochondria, respectively; all play important roles in tumorigenesis by regulating protein homeostasis in response to stress. Thus, simultaneous inhibition of all Hsp90 paralogs is a reasonable strategy for cancer therapy. However, since the existing pan-Hsp90 inhibitor does not accumulate in mitochondria, the potential anticancer activity of pan-Hsp90 inhibition has not yet been fully examined in vivo. Analysis of The Cancer Genome Atlas database revealed that all Hsp90 paralogs were upregulated in prostate cancer. Inactivation of all Hsp90 paralogs induced mitochondrial dysfunction, increased cytosolic calcium, and activated calcineurin. Active calcineurin blocked prosurvival heat shock responses upon Hsp90 inhibition by preventing nuclear translocation of HSF1. The purine scaffold derivative DN401 inhibited all Hsp90 paralogs simultaneously and showed stronger anticancer activity than other Hsp90 inhibitors. Pan-Hsp90 inhibition increased cytotoxicity and suppressed mechanisms that protect cancer cells, suggesting that it is a feasible strategy for the development of potent anticancer drugs. The mitochondria-permeable drug DN401 is a newly identified in vivo pan-Hsp90 inhibitor with potent anticancer activity

    Intrahepatic cholangiocarcinoma arising in Caroli's disease

    Get PDF

    GOChase-II: correcting semantic inconsistencies from Gene Ontology-based annotations for gene products

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Gene Ontology (GO) provides a controlled vocabulary for describing genes and gene products. In spite of the undoubted importance of GO, several drawbacks associated with GO and GO-based annotations have been introduced. We identified three types of semantic inconsistencies in GO-based annotations; semantically redundant, biological-domain inconsistent and taxonomy inconsistent annotations.</p> <p>Methods</p> <p>To determine the semantic inconsistencies in GO annotation, we used the hierarchical structure of GO graph and tree structure of NCBI taxonomy. Twenty seven biological databases were collected for finding semantic inconsistent annotation.</p> <p>Results</p> <p>The distributions and possible causes of the semantic inconsistencies were investigated using twenty seven biological databases with GO-based annotations. We found that some evidence codes of annotation were associated with the inconsistencies. The numbers of gene products and species in a database that are related to the complexity of database management are also in correlation with the inconsistencies. Consequently, numerous annotation errors arise and are propagated throughout biological databases and GO-based high-level analyses. GOChase-II is developed to detect and correct both syntactic and semantic errors in GO-based annotations.</p> <p>Conclusions</p> <p>We identified some inconsistencies in GO-based annotation and provided software, GOChase-II, for correcting these semantic inconsistencies in addition to the previous corrections for the syntactic errors by GOChase-I.</p

    Insulin and glucagon secretions, and morphological change of pancreatic islets in OLETF rats, a model of type 2 diabetes mellitus.

    Get PDF
    This study was performed to observe the changes of glucose-related hormones and the morphological change including ultrastructure of the pancreatic islets in the male Otsuka Long-Evans Tokushima Fatty rat. Area under the curve (AUC) of glucose at the 30th (709 plus minus 73 mg.h/dL) and at the 40th week (746 plus minus 87 mg.h/ dL) of age were significantly higher than that at the 10th week (360 plus minus 25 mg.h/ dL). AUC of insulin of the 10th week was 2.4 plus minus 0.9 ng.h/mL, increased gradually to 10.8 plus minus 8.3 ng.h/mL at the 30th week, and decreased to 1.8 plus minus 1.2 ng.h/mL at the 40th week. The size of islet was increased at 20th week of age and the distribution of peripheral alpha cells and central beta cells at the 10th and 20th weeks was changed to a mixed pattern at the 40th week. On electron microscopic examination, beta cells at the 20th week showed many immature secretory granules, increased mitochondria, and hypertrophied Golgi complex and endoplasmic reticulum. At the 40th week, beta cell contained scanty intracellular organelles and secretory granules and apoptosis of acinar cell was observed. In conclusion, as diabetes progressed, increased secretion of insulin was accompanied by increases in size of islets and number of beta-cells in male OLETF rats showing obese type 2 diabetes. However, these compensatory changes could not overcome the requirement of insulin according to the continuous hyperglycemia after development of diabetes

    Treatment of Branch Retinal Artery Occlusion With Transluminal Nd:YAG Laser Embolysis

    Get PDF
    The purpose of this paper was to report a successful treatment of transluminal Nd:YAG laser embolysis (NYE) for branch retinal artery occlusion (BRAO) with visible emboli. Two patients with acute, severe vision loss secondary to a branch retinal artery occlusion with visible emboli in one eye underwent NYE. A complete ocular examination was performed which included biomicroscopy of the posterior pole of the retina, intraocular pressure measurement, fundus color photographs, and fluorescein angiography (FA). After the NYE, the two patients showed dramatic improvements in best-corrected visual acuity, as well as, immediate and dramatic restorations in flow past the obstructed arteriole in FA. NYE is a treatment modality to be considered in patients with BRAO who present acutely with severe vision loss and a visible embolus
    corecore