1,860 research outputs found
Enhanced overall efficiency of GaInN-based light-emitting diodes with reduced efficiency droop by Al-composition-graded AlGaN/GaN superlattice electron blocking layer
AlxGa1-xN/GaN superlattice electron blocking layers (EBLs) with gradually decreasing Al composition toward the p-type GaN layer are introduced to GaInN-based high-power light-emitting diodes (LEDs). GaInN/GaN multiple quantum well LEDs with 5- and 9-period Al-composition-graded AlxGa1-xN/GaN EBL show comparable operating voltage, higher efficiency as well as less efficiency droop than LEDs having conventional bulk AlGaN EBL, which is attributed to the superlattice doping effect, enhanced hole injection into the active region, and reduced potential drop in the EBL by grading Al compositions. Simulation results reveal a reduction in electron leakage for the superlattice EBL, in agreement with experimental results. (C) 2013 AIP Publishing LLC.open1133sciescopu
Modulation of hole-injection in GaInN-light emitting triodes and its effect on carrier recombination behavior
The effects of the hole injection modulated by using a three-terminal GaInN-based light emitter, light-emitting triode (LET), on carrier recombination behavior and efficiency droop are investigated. It was found that the lateral electric field created by applying voltage bias between the two anodes effectively reduces efficiency droop as well as dynamic conductance of LETs. Detailed analyses of LETs under various operation conditions by APSYS simulations reveal that the asymmetry in carrier transport between electrons and holes is alleviated by promoted injection of hot holes over the potential barrier, increasing the hole concentration as well as the radiative recombination rate in the multiple quantum well active region. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.110Ysciescopu
Nonlinear oscillations of a sessile drop on a hydrophobic surface induced by ac electrowetting
We examine the nature of ac electrowetting (EW)-driven axisymmetric oscillations of a sessile water drop on a dielectric substrate. In ac EW, small-amplitude oscillations of a drop differ from the Rayleigh linear modes of freely oscillating drops. In this paper, we demonstrate that changes in the time-averaged contact angle of the sessile drop attributed to the presence of an electric field and a solid substrate mainly caused this discrepancy. We combine the domain perturbation method with the Lindsted-Poincare method to derive an asymptotic formula for resonant frequency. Theoretical analysis shows that the resonant frequency is a function of the time-averaged contact angle. Each mode of the resonance frequency is a linear function of epsilon(1), which is the magnitude of the cosine of the time-averaged contact angle. The most dominant mode in this study, that is, the fundamental mode n = 2, decreases linearly with epsilon(1). The results of the theoretical model are compared with those of both the experiments and numerical simulations. The average resonant frequency deviation between the perturbation solutions and numerical simulations is 4.3%, whereas that between the perturbation solutions and the experiments is 1.8%.ope
Role of hydrogen carrier gas on the growth of few layer hexagonal boron nitrides by metal-organic chemical vapor deposition
1140Ysciescopu
Nonlinear oscillations of a sessile drop on a hydrophobic surface induced by ac electrowetting
We examine the nature of ac electrowetting (EW)-driven axisymmetric oscillations of a sessile water drop on a dielectric substrate. In ac EW, small-amplitude oscillations of a drop differ from the Rayleigh linear modes of freely oscillating drops. In this paper, we demonstrate that changes in the time-averaged contact angle of the sessile drop attributed to the presence of an electric field and a solid substrate mainly caused this discrepancy. We combine the domain perturbation method with the Lindsted-Poincare method to derive an asymptotic formula for resonant frequency. Theoretical analysis shows that the resonant frequency is a function of the time-averaged contact angle. Each mode of the resonance frequency is a linear function of epsilon(1), which is the magnitude of the cosine of the time-averaged contact angle. The most dominant mode in this study, that is, the fundamental mode n = 2, decreases linearly with epsilon(1). The results of the theoretical model are compared with those of both the experiments and numerical simulations. The average resonant frequency deviation between the perturbation solutions and numerical simulations is 4.3%, whereas that between the perturbation solutions and the experiments is 1.8%.X1121sciescopu
Static behaviour of two-tiered Dou-Gong system reinforced by super-elastic alloy
Dou-Gong system in Asian timber structures play an important role in resisting seismic action. Traditional carpentry in Asia uses timber pegs to connect components which enables relative movement between components, and hence provide friction to dissipate energy in an earthquake. This method however has some short falls such as inadequate stiffness to resist large lateral force and therefore the structures tend to exhibit permanent deformation after the earthquakes. This study proposes a new technique by using super-elastic alloy bars to replace the conventional wooden peg connections to enhance the seismic performance of the structures. Static push-over experiments were conducted on full scaled two-tiered Dou-Gong systems and the high-strength steel and conventional wood pegs as benchmarks. The ultimate stiffness of Dou-Gong system has shown increase by using both high-strength steel and super-elastic alloy bars, but only super-elastic alloy can provide a consistent high damping ratio. This technique also involves pre-strain the super-elastic alloy and the outcomes of this series of experiments have shown that pre-strain in the super-elastic alloy can significantly increase the damping ratio in the structure and hence more energy is dissipated. The results of this paper can be used in the projects of timber structures with Dou-Gong system
Interactions between Transmembrane Helices within Monomers of the Aquaporin AtPIP2;1 Play a Crucial Role in Tetramer Formation
Aquaporin (AQP) is a water channel protein found in various subcellular membranes of both prokaryotic and eukaryotic cells. The physiological functions of AQPs have been elucidated in many organisms. However, understanding their biogenesis remains elusive, particularly regarding how they assemble into tetramers. Here, we investigated the amino acid residues involved in the tetramer formation of the Arabidopsis plasma membrane AQP AtPIP2; 1 using extensive amino acid substitution mutagenesis. The mutant proteins V41A/E44A, F51A/L52A, F87A/I91A, F92A/I93A, V95A/Y96A, and H216A/L217A, harboring alanine substitutions in the transmembrane (TM) helices of AtPIP2; 1 polymerized into multiple oligomeric complexes with a variable number of subunits greater than four. Moreover, these mutant proteins failed to traffic to the plasma membrane, instead of accumulating in the endoplasmic reticulum(ER). Structure-based modeling revealed that these residues are largely involved in interactions between TM helices within monomers. These results suggest that inter-TM interactions occurring both within and between monomers play crucial roles in tetramer formation in the AtPIP2; 1 complex. Moreover, the assembly of AtPIP2; 1 tetramers is critical for their trafficking from the ER to the plasma membrane, as well as water permeability.1133Ysciescopu
Three applications of path integrals: equilibrium and kinetic isotope effects, and the temperature dependence of the rate constant of the [1,5] sigmatropic hydrogen shift in (Z)-1,3-pentadiene
Recent experiments have confirmed the importance of nuclear quantum effects
even in large biomolecules at physiological temperature. Here we describe how
the path integral formalism can be used to describe rigorously the nuclear
quantum effects on equilibrium and kinetic properties of molecules.
Specifically, we explain how path integrals can be employed to evaluate the
equilibrium (EIE) and kinetic (KIE) isotope effects, and the temperature
dependence of the rate constant. The methodology is applied to the [1,5]
sigmatropic hydrogen shift in pentadiene. Both the KIE and the temperature
dependence of the rate constant confirm the importance of tunneling and other
nuclear quantum effects as well as of the anharmonicity of the potential energy
surface. Moreover, previous results on the KIE were improved by using a
combination of a high level electronic structure calculation within the
harmonic approximation with a path integral anharmonicity correction using a
lower level method.Comment: 9 pages, 4 figure
Next-generation analysis of trypanosomatid genome stability and instability
No abstract available
- …