704 research outputs found
Structure of the ArgRS-GlnRS-AIMP1 complex and its implications for mammalian translation
In higher eukaryotes, one of the two arginyl-tRNA synthetases (ArgRSs) has evolved to have an extended N-terminal domain that plays a crucial role in protein synthesis and cell growth and in integration into the multisynthetase complex (MSC). Here, we report a crystal structure of the MSC subcomplex comprising ArgRS, glutaminyl-tRNA synthetase (GlnRS), and the auxiliary factor aminoacyl tRNA synthetase complex-interacting multifunctional protein 1 (AIMP1)/p43. In this complex, the N-terminal domain of ArgRS forms a long coiled-coil structure with the N-terminal helix of AIMP1 and anchors the C-terminal core of GlnRS, thereby playing a central role in assembly of the three components. Mutation of AIMP1 destabilized the N-terminal helix of ArgRS and abrogated its catalytic activity. Mutation of the N-terminal helix of ArgRS liberated GlnRS, which is known to control cell death. This ternary complex was further anchored to AIMP2/p38 through interaction with AIMP1. These findings demonstrate the importance of interactions between the N-terminal domains of ArgRS and AIMP1 for the catalytic and noncatalytic activities of ArgRS and for the assembly of the higher-order MSC protein complex.open111315Ysciescopu
Difference of clinical features in childhood Mycoplasma pneumoniae pneumonia
<p>Abstract</p> <p>Background</p> <p><it>M. pneumoniae </it>pneumonia (MP) has been reported in 10-40% of community-acquired pneumonia cases. We aimed to evaluate the difference of clinical features in children with MP, according to their age and chest radiographic patterns.</p> <p>Methods</p> <p>The diagnosis of MP was made by examinations at both admission and discharge and by two serologic tests: the indirect microparticle agglutinin assay (≥1:40) and the cold agglutinins titer (≥1:32). A total of 191 children with MP were grouped by age: ≤2 years of age (29 patients), 3-5 years of age (81 patients), and ≥6 years of age (81 patients). They were also grouped by pneumonia pattern: bronchopneumonia group (96 patients) and segmental/lobar pneumonia group (95 patients).</p> <p>Results</p> <p>Eighty-six patients (45%) were seroconverters, and the others showed increased antibody titers during hospitalization. Among the three age groups, the oldest children showed the longest duration of fever, highest C-reactive protein (CRP) values, and the most severe pneumonia pattern. The patients with segmental/lobar pneumonia were older and had longer fever duration and lower white blood cell (WBC) and lymphocyte counts, compared with those with bronchopneumonia. The patient group with the most severe pulmonary lesions had the most prolonged fever, highest CRP, highest rate of seroconverters, and lowest lymphocyte counts. Thrombocytosis was observed in 8% of patients at admission, but in 33% of patients at discharge.</p> <p>Conclusions</p> <p>In MP, older children had more prolonged fever and more severe pulmonary lesions. The severity of pulmonary lesions was associated with the absence of diagnostic IgM antibodies at presentation and lymphocyte count. Short-term paired IgM serologic test may be mandatory for early and definitive diagnosis of MP.</p
Increased impedance near cut-off in plasma-like media leading to emission of high-power, narrow-bandwidth radiation
Ultra-intense, narrow-bandwidth, electromagnetic pulses have become important tools for exploring the characteristics of matter. Modern tuneable high-power light sources, such as free-electron lasers and vacuum tubes, rely on bunching of relativistic or near-relativistic electrons in vacuum. Here we present a fundamentally different method for producing narrow-bandwidth radiation from a broad spectral bandwidth current source, which takes advantage of the inflated radiation impedance close to cut-off in a medium with a plasma-like permittivity. We find that by embedding a current source in this cut-off region, more than an order of magnitude enhancement of the radiation intensity is obtained compared with emission directly into free space. The method suggests a simple and general way to flexibly use broadband current sources to produce broad or narrow bandwidth pulses. As an example, we demonstrate, using particle-in-cell simulations, enhanced monochromatic emission of terahertz radiation using a two-colour pumped current source enclosed by a tapered waveguide.ope
New Techniques for Treating an Anal Fistula
Surgery for an anal fistula may result in recurrence or impairment of continence. The ideal treatment for an anal fistula should be associated with low recurrence rates, minimal incontinence and good quality of life. Because of the risk of a change in continence with conventional techniques, sphincter-preserving techniques for the management complex anal fistulae have been evaluated. First, the anal fistula plug is made of lyophilized porcine intestinal submucosa. The anal fistula plug is expected to provide a collagen scaffold to promote tissue in growth and fistula healing. Another addition to the sphincter-preserving options is the ligation of intersphincteric fistula tract procedure. This technique is based on the concept of secure closure of the internal opening and concomitant removal of infected cryptoglandular tissue in the intersphincteric plane. Recently, cell therapy for an anal fistula has been described. Adipose-derived stem cells have two biologic properties, namely, ability to suppress inflammation and differentiation potential. These properties are useful for the regeneration or the repair of damaged tissues. This article discusses the rationales for, the estimated efficacies of, and the limitations of new sphincter-preserving techniques for the treatment of anal fistulae
Pulmonary Function and Incident Bronchitis and Asthma in Children: A Community-Based Prospective Cohort Study
BACKGROUND: Previous studies revealed that reduction of airway caliber in infancy might increase the risks for wheezing and asthma. However, the evidence for the predictive effects of pulmonary function on respiratory health in children was still inconsistent. METHODS: We conducted a population-based prospective cohort study among children in 14 Taiwanese communities. There were 3,160 children completed pulmonary function tests in 2007 and follow-up questionnaire in 2009. Poisson regression models were performed to estimate the effect of pulmonary function on the development of bronchitis and asthma. RESULTS: After adjustment for potential confounders, pulmonary function indices consistently showed protective effects on respiratory diseases in children. The incidence rate ratios of bronchitis and asthma were 0.86 (95% CI 0.79-0.95) and 0.91 (95% CI 0.82-0.99) for forced expiratory volume in 1 second (FEV₁). Similar adverse effects of maximal mid-expiratory flow (MMEF) were also observed on bronchitis (RR = 0.73, 95% CI 0.67-0.81) and asthma (RR = 0.85, 95% CI 0.77-0.93). We found significant decreasing trends in categorized FEV₁ (p for trend = 0.02) and categories of MMEF (p for trend = 0.01) for incident bronchitis. Significant modification effects of traffic-related air pollution were noted for FEV₁ and MMEF on bronchitis and also for MMEF on asthma. CONCLUSIONS: Children with high pulmonary function would have lower risks on the development of bronchitis and asthma. The protective effect of high pulmonary function would be modified by traffic-related air pollution exposure
Antidepressant stimulation of CDP-diacylglycerol synthesis does not require monoamine reuptake inhibition
<p>Abstract</p> <p>Background</p> <p>Recent studies demonstrate that diverse antidepressant agents increase the cellular production of the nucleolipid CDP-diacylglycerol and its synthetic derivative, phosphatidylinositol, in depression-relevant brain regions. Pharmacological blockade of downstream phosphatidylinositide signaling disrupted the behavioral antidepressant effects in rats. However, the nucleolipid responses were resistant to inhibition by serotonin receptor antagonists, even though antidepressant-facilitated inositol phosphate accumulation was blocked. Could the neurochemical effects be additional to the known effects of the drugs on monoamine transmitter transporters? To examine this question, we tested selected agents in serotonin-depleted brain tissues, in PC12 cells devoid of serotonin transporters, and on the enzymatic activity of brain CDP-diacylglycerol synthase - the enzyme that catalyzes the physiological synthesis of CDP-diacylglycerol.</p> <p>Results</p> <p>Imipramine, paroxetine, and maprotiline concentration-dependently increased the levels of CDP-diacylglycerol and phosphatidylinositides in PC12 cells. Rat forebrain tissues depleted of serotonin by pretreatment with <it>p</it>-chlorophenylalanine showed responses to imipramine or maprotiline that were comparable to respective responses from saline-injected controls. With fluoxetine, nucleolipid responses in the serotonin-depleted cortex or hippocampus were significantly reduced, but not abolished. Each drug significantly increased the enzymatic activity of CDP-diacylglycerol synthase following incubations with cortical or hippocampal brain tissues.</p> <p>Conclusion</p> <p>Antidepressants probably induce the activity of CDP-diacylglycerol synthase leading to increased production of CDP-diacylglycerol and facilitation of downstream phosphatidylinositol synthesis. Phosphatidylinositol-dependent signaling cascades exert diverse salutary effects in neural cells, including facilitation of BDNF signaling and neurogenesis. Hence, the present findings should strengthen the notion that modulation of brain phosphatidylinositide signaling probably contributes to the molecular mechanism of diverse antidepressant medications.</p
Fractionation of a Herbal Antidiarrheal Medicine Reveals Eugenol as an Inhibitor of Ca2+-Activated Cl− Channel TMEM16A
The Ca2+-activated Cl− channel TMEM16A is involved in epithelial fluid secretion, smooth muscle contraction and neurosensory signaling. We identified a Thai herbal antidiarrheal formulation that inhibited TMEM16A Cl− conductance. C18-reversed-phase HPLC fractionation of the herbal formulation revealed >98% of TMEM16A inhibition activity in one out of approximately 20 distinct peaks. The purified, active compound was identified as eugenol (4-allyl-2-methoxyphenol), the major component of clove oil. Eugenol fully inhibited TMEM16A Cl− conductance with single-site IC50∼150 µM. Eugenol inhibition of TMEM16A in interstitial cells of Cajal produced strong inhibition of intestinal contraction in mouse ileal segments. TMEM16A Cl− channel inhibition adds to the list of eugenol molecular targets and may account for some of its biological activities
A Genetic Polymorphism (rs17251221) in the Calcium-Sensing Receptor Gene (CASR) Is Associated with Stone Multiplicity in Calcium Nephrolithiasis
Calcium nephrolithiasis is one of the most common causes of renal stones. While the prevalence of this disease has increased steadily over the last 3 decades, its pathogenesis is still unclear. Previous studies have indicated that a genetic polymorphism (rs17251221) in the calcium-sensing receptor gene (CASR) is associated with the total serum calcium levels. In this study, we collected DNA samples from 480 Taiwanese subjects (189 calcium nephrolithiasis patients and 291 controls) for genotyping the CASR gene. Our results indicated no significant association between the CASR polymorphism (rs17251221) and the susceptibility of calcium nephrolithiasis. However, we found a significant association between rs17251221 and stone multiplicity. The risk of stone multiplicity was higher in patients with the GG+GA genotype than in those with the AA genotype (chi-square test:P = 0.008;odds ratio = 4.79;95% confidence interval, 1.44–15.92;Yates' correction for chi-square test:P = 0.013). In conclusion, our results provide evidence supporting the genetic effects of CASR on the pathogenesis of calcium nephrolithiasis
- …