18,175 research outputs found
Conserved cosmological structures in the one-loop superstring effective action
A generic form of low-energy effective action of superstring theories with
one-loop quantum correction is well known. Based on this action we derive the
complete perturbation equations and general analytic solutions in the
cosmological spacetime. Using the solutions we identify conserved quantities
characterizing the perturbations: the amplitude of gravitational wave and the
perturbed three-space curvature in the uniform-field gauge both in the
large-scale limit, and the angular-momentum of rotational perturbation are
conserved independently of changing gravity sector. Implications for
calculating perturbation spectra generated in the inflation era based on the
string action are presented.Comment: 5 pages, no figure, To appear in Phys. Rev.
A conserved variable in the perturbed hydrodynamic world model
We introduce a scalar-type perturbation variable which is conserved in
the large-scale limit considering general sign of three-space curvature (),
the cosmological constant (), and time varying equation of state. In a
pressureless medium is {\it exactly conserved} in all scales.Comment: 4 pages, no figure, To appear in Phys. Rev.
Relativistic Hydrodynamic Cosmological Perturbations
Relativistic cosmological perturbation analyses can be made based on several
different fundamental gauge conditions. In the pressureless limit the variables
in certain gauge conditions show the correct Newtonian behaviors. Considering
the general curvature () and the cosmological constant () in the
background medium, the perturbed density in the comoving gauge, and the
perturbed velocity and the perturbed potential in the zero-shear gauge show the
same behavior as the Newtonian ones in general scales. In the first part, we
elaborate these Newtonian correspondences. In the second part, using the
identified gauge-invariant variables with correct Newtonian correspondences, we
present the relativistic results with general pressures in the background and
perturbation. We present the general super-sound-horizon scale solutions of the
above mentioned variables valid for general , , and generally
evolving equation of state. We show that, for vanishing , the
super-sound-horizon scale evolution is characterised by a conserved variable
which is the perturbed three-space curvature in the comoving gauge. We also
present equations for the multi-component hydrodynamic situation and for the
rotation and gravitational wave.Comment: 16 pages, no figure, To appear in Gen. Rel. Gra
A strategic study of energy efficient and hybrid energy system options for a multi-family building in Korea
This study is to identify performance of energy efficiency measures and to match low-carbon and renewable energy (RE) systems supplies to demands in the context of multi-family residential buildings in Korea. An approach to the evaluation of the hybrid energy systems was investigated, including consideration of heat and power demand profiles, energy system combinations, building design options and strategies for matching supply to demand. The approach is encapsulated within an integrated software environment. Building energy simulation technology was exploited to make virtual energy use data. Low-carbon and RE system modelling techniques were used to predict energy supply profiles. A series of demand/supply matching-based analyses were made to identify the effect of energy efficient demand measures (e.g. roof-top gardens, innovative underfloor heating system) and evaluate the capacity utilisation factor from the hybrid energy systems. On the basis of performance information obtained at the conceptual design stage, the design team can pinpoint the most energy efficient demand/supply combination, and consequently, maximise the impact of hybrid energy systems adoption
Nonsemisimple Fusion Algebras and the Verlinde Formula
We find a nonsemisimple fusion algebra F_p associated with each (1,p)
Virasoro model. We present a nonsemisimple generalization of the Verlinde
formula which allows us to derive F_p from modular transformations of
characters.Comment: LaTeX (amsart, xypic, times), 35p
String theoretic axion coupling and the evolution of cosmic structures
We examine the effects of the axion coupling to on the evolution
of cosmic structures. It is shown that the evolutions of the scalar- and
vector-type perturbations are not affected by this axion coupling. However the
axion coupling causes an asymmetric evolution of the two polarization states of
the tensor-type perturbation, which may lead to a sizable polarization
asymmetry in the cosmological gravitational wave if inflation involves a period
in which the axion coupling is important. The polarization asymmetry produced
during inflation are conserved over the subsequent evolution as long as the
scales remain in the large-scale limit, and thus this may lead to an observable
trace in the cosmic microwave background radiation.Comment: 10 pages, REVte
Singularities in scalar-tensor gravity
The analysis of certain singularities in scalar-tensor gravity contained in a
recent paper is completed, and situations are pointed out in which these
singularities cannot occur.Comment: 6 pages, LaTe
Orphan G protein-coupled receptors MrgA1 and MrgC11 are distinctively activated by RF-amide-related peptides through the G{alpha}q/11 pathway
MrgA1 and MrgC11 belong to a recently identified family of orphan G-protein coupled receptors, called mrgs (mas-related genes). They are only expressed in a specific subset of sensory neurons that are known to detect painful stimuli. However, the precise physiological function of Mrg receptors and their underlying mechanisms of signal transduction are not known. We therefore have screened a series of neuropeptides against human embryonic kidney (HEK) 293 cells that stably express either MrgA1 or MrgC11 to identify ligands and/or agonists. MrgA1- or MrgC11-specific agonists stimulated dose-dependent increases in intracellular free Ca2+ in a pertussis toxin-insensitive manner, but failed to alter basal or forskolin-stimulated levels of intracellular cAMP. Furthermore, studies using embryonic fibroblasts derived from various G{alpha} protein knockout mice demonstrated that both the MrgA1 and MrgC11 receptors are coupled to the G{alpha}q/11 signaling pathway. Screening of neuropeptides identified surrogate agonists, most of these peptides included a common C-terminal -RF(Y)G or -RF(Y) amide motif. Structure-function studies suggest that endogenous ligands of Mrg receptors are likely to be RF(Y)G and/or RF(Y) amide-related peptides and that postprocessing of these peptides may serve to determine Mrg receptor-ligand specificity. The differences in ligand specificity also suggest functional diversity amongst the Mrg receptors
Cosmological Gravitational Wave in a Gravity with Quadratic Order Curvature Couplings
We present a set of equations describing the cosmological gravitational wave
in a gravity theory with quadratic order gravitational coupling terms which
naturally arise in quantum correction procedures. It is known that the
gravitational wave equation in the gravity theories with a general term
in the action leads to a second order differential equation with the only
correction factor appearing in the damping term. The case for a
term is completely different. The gravitational wave is described by a fourth
order differential equation both in time and space. However, curiously, we find
that the contributions to the background evolution are qualitatively the same
for both terms.Comment: 4 pages, revtex, no figure
- …