99 research outputs found

    Drug sensitivity profiling of 3D tumor tissue cultures in the pediatric precision oncology program INFORM

    Full text link
    The international precision oncology program INFORM enrolls relapsed/refractory pediatric cancer patients for comprehensive molecular analysis. We report a two-year pilot study implementing ex vivo drug sensitivity profiling (DSP) using a library of 75-78 clinically relevant drugs. We included 132 viable tumor samples from 35 pediatric oncology centers in seven countries. DSP was conducted on multicellular fresh tumor tissue spheroid cultures in 384-well plates with an overall mean processing time of three weeks. In 89 cases (67%), sufficient viable tissue was received; 69 (78%) passed internal quality controls. The DSP results matched the identified molecular targets, including BRAF, ALK, MET, and TP53 status. Drug vulnerabilities were identified in 80% of cases lacking actionable (very) high-evidence molecular events, adding value to the molecular data. Striking parallels between clinical courses and the DSP results were observed in selected patients. Overall, DSP in clinical real-time is feasible in international multicenter precision oncology programs

    Drug sensitivity profiling of 3D tumor tissue cultures in the pediatric precision oncology program INFORM

    Get PDF
    The international precision oncology program INFORM enrolls relapsed/refractory pediatric cancer patients for comprehensive molecular analysis. We report a two-year pilot study implementing ex vivo drug sensitivity profiling (DSP) using a library of 75–78 clinically relevant drugs. We included 132 viable tumor samples from 35 pediatric oncology centers in seven countries. DSP was conducted on multicellular fresh tumor tissue spheroid cultures in 384-well plates with an overall mean processing time of three weeks. In 89 cases (67%), sufficient viable tissue was received; 69 (78%) passed internal quality controls. The DSP results matched the identified molecular targets, including BRAF, ALK, MET, and TP53 status. Drug vulnerabilities were identified in 80% of cases lacking actionable (very) high-evidence molecular events, adding value to the molecular data. Striking parallels between clinical courses and the DSP results were observed in selected patients. Overall, DSP in clinical real-time is feasible in international multicenter precision oncology programs

    Drug sensitivity profiling of 3D tumor tissue cultures in the pediatric precision oncology program INFORM

    Get PDF
    The international precision oncology program INFORM enrolls relapsed/refractory pediatric cancer patients for comprehensive molecular analysis. We report a two-year pilot study implementing ex vivo drug sensitivity profiling (DSP) using a library of 75-78 clinically relevant drugs. We included 132 viable tumor samples from 35 pediatric oncology centers in seven countries. DSP was conducted on multicellular fresh tumor tissue spheroid cultures in 384-well plates with an overall mean processing time of three weeks. In 89 cases (67%), sufficient viable tissue was received; 69 (78%) passed internal quality controls. The DSP results matched the identified molecular targets, including BRAF, ALK, MET, and TP53 status. Drug vulnerabilities were identified in 80% of cases lacking actionable (very) high-evidence molecular events, adding value to the molecular data. Striking parallels between clinical courses and the DSP results were observed in selected patients. Overall, DSP in clinical real-time is feasible in international multicenter precision oncology programs.Peer reviewe

    CYP24A1 variant modifies the association between use of oestrogen plus progestogen therapy and colorectal cancer risk

    Get PDF
    BACKGROUND: Menopausal hormone therapy (MHT) use has been consistently associated with a decreased risk of colorectal cancer (CRC) in women. Our aim was to use a genome-wide gene-environment interaction analysis to identify genetic modifiers of CRC risk associated with use of MHT. METHODS: We included 10 835 postmenopausal women (5419 cases and 5416 controls) from 10 studies. We evaluated use of any MHT, oestrogen-only (E-only) and combined oestrogen-progestogen (E+P) hormone preparations. To test for multiplicative interactions, we applied the empirical Bayes (EB) test as well as the Wald test in conventional case-control logistic regression as primary tests. The Cocktail test was used as secondary test. RESULTS: The EB test identified a significant interaction between rs964293 at 20q13.2/CYP24A1 and E+P (interaction OR (95% CIs)=0.61 (0.52-0.72), P=4.8 × 10(-9)). The secondary analysis also identified this interaction (Cocktail test OR=0.64 (0.52-0.78), P=1.2 × 10(-5) (alpha threshold=3.1 × 10(-4)). The ORs for association between E+P and CRC risk by rs964293 genotype were as follows: C/C, 0.96 (0.61-1.50); A/C, 0.61 (0.39-0.95) and A/A, 0.40 (0.22-0.73), respectively. CONCLUSIONS: Our results indicate that rs964293 modifies the association between E+P and CRC risk. The variant is located near CYP24A1, which encodes an enzyme involved in vitamin D metabolism. This novel finding offers additional insight into downstream pathways of CRC etiopathogenesis

    Genome-Wide Diet-Gene Interaction Analyses for Risk of Colorectal Cancer

    Get PDF
    Dietary factors, including meat, fruits, vegetables and fiber, are associated with colorectal cancer; however, there is limited information as to whether these dietary factors interact with genetic variants to modify risk of colorectal cancer. We tested interactions between these dietary factors and approximately 2.7 million genetic variants for colorectal cancer risk among 9,287 cases and 9,117 controls from ten studies. We used logistic regression to investigate multiplicative gene-diet interactions, as well as our recently developed Cocktail method that involves a screening step based on marginal associations and gene-diet correlations and a testing step for multiplicative interactions, while correcting for multiple testing using weighted hypothesis testing. Per quartile increment in the intake of red and processed meat were associated with statistically significant increased risks of colorectal cancer and vegetable, fruit and fiber intake with lower risks. From the case-control analysis, we detected a significant interaction between rs4143094 (10p14/near GATA3) and processed meat consumption (OR = 1.17; p = 8.7E-09), which was consistently observed across studies (p heterogeneity = 0.78). The risk of colorectal cancer associated with processed meat was increased among individuals with the rs4143094-TG and -TT genotypes (OR = 1.20 and OR = 1.39, respectively) and null among those with the GG genotype (OR = 1.03). Our results identify a novel gene-diet interaction with processed meat for colorectal cancer, highlighting that diet may modify the effect of genetic variants on disease risk, which may have important implications for prevention. © 2014

    Genome Sequencing of SHH Medulloblastoma Predicts Genotype-Related Response to Smoothened Inhibition

    Get PDF
    SummarySmoothened (SMO) inhibitors recently entered clinical trials for sonic-hedgehog-driven medulloblastoma (SHH-MB). Clinical response is highly variable. To understand the mechanism(s) of primary resistance and identify pathways cooperating with aberrant SHH signaling, we sequenced and profiled a large cohort of SHH-MBs (n = 133). SHH pathway mutations involved PTCH1 (across all age groups), SUFU (infants, including germline), and SMO (adults). Children >3 years old harbored an excess of downstream MYCN and GLI2 amplifications and frequent TP53 mutations, often in the germline, all of which were rare in infants and adults. Functional assays in different SHH-MB xenograft models demonstrated that SHH-MBs harboring a PTCH1 mutation were responsive to SMO inhibition, whereas tumors harboring an SUFU mutation or MYCN amplification were primarily resistant

    Genome-Wide Diet-Gene Interaction Analyses for Risk of Colorectal Cancer

    Get PDF
    Dietary factors, including meat, fruits, vegetables and fiber, are associated with colorectal cancer; however, there is limited information as to whether these dietary factors interact with genetic variants to modify risk of colorectal cancer. We tested interactions between these dietary factors and approximately 2.7 million genetic variants for colorectal cancer risk among 9,287 cases and 9,117 controls from ten studies. We used logistic regression to investigate multiplicative gene-diet interactions, as well as our recently developed Cocktail method that involves a screening step based on marginal associations and gene-diet correlations and a testing step for multiplicative interactions, while correcting for multiple testing using weighted hypothesis testing. Per quartile increment in the intake of red and processed meat were associated with statistically significant increased risks of colorectal cancer and vegetable, fruit and fiber intake with lower risks. From the case-control analysis, we detected a significant interaction between rs4143094 (10p14/near GATA3) and processed meat consumption (OR = 1.17; p = 8.7E-09), which was consistently observed across studies (p heterogeneity = 0.78). The risk of colorectal cancer associated with processed meat was increased among individuals with the rs4143094-TG and -TT genotypes (OR = 1.20 and OR = 1.39, respectively) and null among those with the GG genotype (OR = 1.03). Our results identify a novel gene-diet interaction with processed meat for colorectal cancer, highlighting that diet may modify the effect of genetic variants on disease risk, which may have important implications for prevention
    • …
    corecore