14 research outputs found

    Tuning of the luminescence in poly((silanylene)thiophene)s

    Get PDF
    Synthetic routes to alternating copolymers consisting of oligosilylene blocks and oligothiophene blocks (T-x; x = 1, 2, 3, 4, or 6 rings) are presented. Solubility requirements for obtaining acceptable molecular weights and, eventually, for film formation are met by the introduction of butyl groups replacing methyls on the silicon atoms and by employing T-6 blocks carrying two octyl substituents. Additionally, substituted oligothiophenes are synthesized as an aid in the interpretation of NMR, absorption, and fluorescence spectra. Regarding the electronic configuration of the oligothiophene blocks, NMR spectra show clear differences between plain oligothiophenes, end-substituted oligothiophenes, and polymers, indicative of pi-sigma interactions with the oligosilylene blocks and possible through-conjugation to adjacent blocks in polymers. Red shifts in optical spectra show a parallel trend across the various compounds based on the same oligothiophene unit, related to the stabilization of photoexcited states on the oligothiophene by the oligosilylene substituents. These effects are strong in T-2-based compounds and reduced fdr longer T-n. The main feature of the spectra is the decrease of the transition energies with the size of the oligothiophene blocks in the polymers. Since this effect is also found in fluorescence, it enables one to adjust the luminescence wavelength by choosing the proper block length (''chemical tuning''). Fluorescence quantum efficiencies in solution are found to be remarkably high in polymers based on T-2 blocks. Spin-coated films of T-2-based (or T-3-based) polymers show evidence of T-4 (T-6) impurity blocks that act as an exciton trap

    Photonic polymers for the devices of the 21st century

    No full text
    This paper describes research activities towards the development of polymer materials and devices for optoelectronics. Electroluminescent devices, lasers and photovoltaic devices from polymers or oligomers are discussed
    corecore