248 research outputs found

    A 63 element 1.75 dimensional ultrasound phased array for the treatment of benign prostatic hyperplasia

    Get PDF
    BACKGROUND: Prostate cancer and benign prostatic hyperplasia are very common diseases in older American men, thus having a reliable treatment modality for both diseases is of great importance. The currently used treating options, mainly surgical ones, have numerous complications, which include the many side effects that accompany such procedures, besides the invasive nature of such techniques. Focused ultrasound is a relatively new treating modality that is showing promising results in treating prostate cancer and benign prostatic hyperplasia. Thus this technique is gaining more attention in the past decade as a non-invasive method to treat both diseases. METHODS: In this paper, the design, construction and evaluation of a 1.75 dimensional ultrasound phased array to be used for treating prostate cancer and benign prostatic hyperplasia is presented. With this array, the position of the focus can be controlled by changing the electrical power and phase to the individual elements for electronically focusing and steering in a three dimensional volume. The array was designed with a maximum steering angle of ± 13.5° in the transverse direction and a maximum depth of penetration of 11 cm, which allows the treatment of large prostates. The transducer piezoelectric ceramic, matching layers and cable impedance have been designed for maximum power transfer to tissue. RESULTS: To verify the capability of the transducer for focusing and steering, exposimetry was performed and the results correlated well with the calculated field. Ex vivo experiments using bovine tissue were performed with various lesion sizes and indicated the capability of the transducer to ablate tissue using short sonications. CONCLUSION: A 1.75 dimensional array, that overcame the drawbacks associated with one-dimensional arrays, has been designed, built and successfully tested. Design issues, such as cable and ceramic capacitances, were taken into account when designing this array. The final prototype overcame also the problem of generating grating lobes at unwanted locations by tapering the array elements

    Voxel-wise comparisons of cellular microstructure and diffusion-MRI in mouse hippocampus using 3D Bridging of Optically-clear histology with Neuroimaging Data (3D-BOND)

    Get PDF
    A key challenge in medical imaging is determining a precise correspondence between image properties and tissue microstructure. This comparison is hindered by disparate scales and resolutions between medical imaging and histology. We present a new technique, 3D Bridging of Optically-clear histology with Neuroimaging Data (3D-BOND), for registering medical images with 3D histology to overcome these limitations. Ex vivo 120 × 120 × 200 μm resolution diffusion-MRI (dMRI) data was acquired at 7 T from adult C57Bl/6 mouse hippocampus. Tissue was then optically cleared using CLARITY and stained with cellular markers and confocal microscopy used to produce high-resolution images of the 3D-tissue microstructure. For each sample, a dense array of hippocampal landmarks was used to drive registration between upsampled dMRI data and the corresponding confocal images. The cell population in each MRI voxel was determined within hippocampal subregions and compared to MRI-derived metrics. 3D-BOND provided robust voxel-wise, cellular correlates of dMRI data. CA1 pyramidal and dentate gyrus granular layers had significantly different mean diffusivity (p > 0.001), which was related to microstructural features. Overall, mean and radial diffusivity correlated with cell and axon density and fractional anisotropy with astrocyte density, while apparent fibre density correlated negatively with axon density. Astrocytes, axons and blood vessels correlated to tensor orientation

    MR thermometry characterization of a hyperthermia ultrasound array designed using the k-space computational method

    Get PDF
    BACKGROUND: Ultrasound induced hyperthermia is a useful adjuvant to radiation therapy in the treatment of prostate cancer. A uniform thermal dose (43°C for 30 minutes) is required within the targeted cancerous volume for effective therapy. This requires specific ultrasound phased array design and appropriate thermometry method. Inhomogeneous, acoustical, three-dimensional (3D) prostate models and economical computational methods provide necessary tools to predict the appropriate shape of hyperthermia phased arrays for better focusing. This research utilizes the k-space computational method and a 3D human prostate model to design an intracavitary ultrasound probe for hyperthermia treatment of prostate cancer. Evaluation of the probe includes ex vivo and in vivo controlled hyperthermia experiments using the noninvasive magnetic resonance imaging (MRI) thermometry. METHODS: A 3D acoustical prostate model was created using photographic data from the Visible Human Project(®). The k-space computational method was used on this coarse grid and inhomogeneous tissue model to simulate the steady state pressure wavefield of the designed phased array using the linear acoustic wave equation. To ensure the uniformity and spread of the pressure in the length of the array, and the focusing capability in the width of the array, the equally-sized elements of the 4 × 20 elements phased array were 1 × 14 mm. A probe was constructed according to the design in simulation using lead zerconate titanate (PZT-8) ceramic and a Delrin(® )plastic housing. Noninvasive MRI thermometry and a switching feedback controller were used to accomplish ex vivo and in vivo hyperthermia evaluations of the probe. RESULTS: Both exposimetry and k-space simulation results demonstrated acceptable agreement within 9%. With a desired temperature plateau of 43.0°C, ex vivo and in vivo controlled hyperthermia experiments showed that the MRI temperature at the steady state was 42.9 ± 0.38°C and 43.1 ± 0.80°C, respectively, for 20 minutes of heating. CONCLUSION: Unlike conventional computational methods, the k-space method provides a powerful tool to predict pressure wavefield in large scale, 3D, inhomogeneous and coarse grid tissue models. Noninvasive MRI thermometry supports the efficacy of this probe and the feedback controller in an in vivo hyperthermia treatment of canine prostate

    Inter-specific hybridization underlies phenotypic variability in Daphnia populations

    Full text link
    In the glacial lakes of the Palaearctic three species of Cladocera commonly coexist: Daphnia hyalina, D. galeata , and D. cucullata . Frequently these populations contain not only animals which are morphologically typical for the species but also individuals of an intermediate phenotype. Electrophoretic investigations of allozyme-patterns in morphologically typical individuals reveal that each species is fixed for a different allele at the GOT locus. Morphologically intermediate animals are heterozygous for the alleles of the two species which they resemble. The allelic pattern at other loci is also consistent with the assumption that morphological intermediates are formed via interspecific hybridization. Very few backcrosses between galeata-hyalina hybrids and their parent species are found, and there is no indication of gene flow between D. cucullata and the other species.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47761/1/442_2004_Article_BF00378763.pd

    Making space for empathy: supporting doctors in the emotional labour of clinical care

    Get PDF
    BACKGROUND: The academic and medical literature highlights the positive effects of empathy for patient care. Yet, very little attention has been given to the impact of the requirement for empathy on the physicians themselves and on their emotional wellbeing. DISCUSSION: The medical profession requires doctors to be both clinically competent and empathetic towards the patients. In practice, accommodating both requirements can be difficult for physicians. The image of the technically skilful, rational, and emotionally detached doctor dominates the profession, and inhibits physicians from engaging emotionally with their patients and their own feelings, which forms the basis for empathy. This inhibition has a negative impact not only on the patients but also on the physicians. The expression of emotions in medical practice is perceived as unprofessional and many doctors learn to supress and ignore their feelings. When facing stressful situations, these physicians are more likely to suffer from depression and burnout than those who engage with and reflect on their feelings. Physicians should be supported in their emotional work, which will help them develop empathy. Methods could include questionnaires that aid self-reflection, and discussion groups with peers and supervisors on emotional experiences. Yet, in order for these methods to work, the negative image associated with the expression of emotions should be questioned. Also, the work conditions of physicians should improve to allow them to make use of these tools. SUMMARY: Empathy should not only be expected from doctors but should be actively promoted, assisted and cultivated in the medical profession

    Ecological Niche Dimensionality and the Evolutionary Diversification of Stick Insects

    Get PDF
    The degree of phenotypic divergence and reproductive isolation between taxon pairs can vary quantitatively, and often increases as evolutionary divergence proceeds through various stages, from polymorphism to population differentiation, ecotype and race formation, speciation, and post-speciational divergence. Although divergent natural selection promotes divergence, it does not always result in strong differentiation. For example, divergent selection can fail to complete speciation, and distinct species pairs sometimes collapse (‘speciation in reverse’). Widely-discussed explanations for this variability concern genetic architecture, and the geographic arrangement of populations. A less-explored possibility is that the degree of phenotypic and reproductive divergence between taxon pairs is positively related to the number of ecological niche dimensions (i.e., traits) subject to divergent selection. Some data supporting this idea stem from laboratory experimental evolution studies using Drosophila, but tests from nature are lacking. Here we report results from manipulative field experiments in natural populations of herbivorous Timema stick insects that are consistent with this ‘niche dimensionality’ hypothesis. In such insects, divergent selection between host plants might occur for cryptic colouration (camouflage to evade visual predation), physiology (to detoxify plant chemicals), or both of these niche dimensions. We show that divergent selection on the single niche dimension of cryptic colouration can result in ecotype formation and intermediate levels of phenotypic and reproductive divergence between populations feeding on different hosts. However, greater divergence between a species pair involved divergent selection on both niche dimensions. Although further replication of the trends reported here is required, the results suggest that dimensionality of selection may complement genetic and geographic explanations for the degree of diversification in nature

    A defect in myoblast fusion underlies Carey-Fineman-Ziter syndrome

    Get PDF
    Multinucleate cellular syncytial formation is a hallmark of skeletal muscle differentiation. Myomaker, encoded by Mymk (Tmem8c), is a well-conserved plasma membrane protein required for myoblast fusion to form multinucleated myotubes in mouse, chick, and zebrafish. Here, we report that autosomal recessive mutations in MYMK (OMIM 615345) cause Carey-Fineman-Ziter syndrome in humans (CFZS; OMIM 254940) by reducing but not eliminating MYMK function. We characterize MYMK-CFZS as a congenital myopathy with marked facial weakness and additional clinical and pathologic features that distinguish it from other congenital neuromuscular syndromes. We show that a heterologous cell fusion assay in vitro and allelic complementation experiments in mymk knockdown and mymk insT/insT zebrafish in vivo can differentiate between MYMK wild type, hypomorphic and null alleles. Collectively, these data establish that MYMK activity is necessary for normal muscle development and maintenance in humans, and expand the spectrum of congenital myopathies to include cell-cell fusion deficits

    Spatial Frequency-Based Analysis of Mean Red Blood Cell Speed in Single Microvessels: Investigation of Microvascular Perfusion in Rat Cerebral Cortex

    Get PDF
    BACKGROUND: Our previous study has shown that prenatal exposure to X-ray irradiation causes cerebral hypo-perfusion during the postnatal development of central nervous system (CNS). However, the source of the hypo-perfusion and its impact on the CNS development remains unclear. The present study developed an automatic analysis method to determine the mean red blood cell (RBC) speed through single microvessels imaged with two-photon microscopy in the cerebral cortex of rats prenatally exposed to X-ray irradiation (1.5 Gy). METHODOLOGY/PRINCIPAL FINDINGS: We obtained a mean RBC speed (0.9±0.6 mm/sec) that ranged from 0.2 to 4.4 mm/sec from 121 vessels in the radiation-exposed rats, which was about 40% lower than that of normal rats that were not exposed. These results were then compared with the conventional method for monitoring microvascular perfusion using the arteriovenous transit time (AVTT) determined by tracking fluorescent markers. A significant increase in the AVTT was observed in the exposed rats (1.9±0.6 sec) as compared to the age-matched non-exposed rats (1.2±0.3 sec). The results indicate that parenchyma capillary blood velocity in the exposed rats was approximately 37% lower than in non-exposed rats. CONCLUSIONS/SIGNIFICANCE: The algorithm presented is simple and robust relative to monitoring individual RBC speeds, which is superior in terms of noise tolerance and computation time. The demonstrative results show that the method developed in this study for determining the mean RBC speed in the spatial frequency domain was consistent with the conventional transit time method

    Contamination, risk, and source apportionment of potentially toxic microelements in river sediments and soil after extreme flooding in the Kolubara River catchment in Western Serbia

    Get PDF
    Climate change is contributing to an increase in extreme weather events. This results in a higher river flooding risk, causing a series of environmental disturbances, including potential contamination of agricultural soil. In Serbia, the catastrophic floods of 2014 affected six river basins, including the Kolubara River Basin, as one of the larger sub-catchments of the large regional Sava River Basin, which is characterized by large areas under agricultural cultures, various geological substrates, and different types of industrial pollution. The main aim of this study was to establish the sources of potentially toxic elements in soil and flood sediments and the effect of the flood on their concentrations. Field sampling was performed immediately after water had receded from the flooded area in May 2014. In total, 36 soil samples and 28 flood sediment samples were collected. After acid digestion (HNO3), concentrations of the most frequent potentially toxic elements (PTE) in agricultural production (As, Cd, Cr, Cu, Ni, Pb, Zn) and Co which are closely related to the geological characteristics of river catchments, were analyzed. The origin, source, and interrelations of microelements, as well as BACKGROUND: values of the PTE of the river catchment, the pollution index (Pi), enrichment factor (Ef), and geological index (Igeo), were determined, using statistical methods such as Pearson correlations, principal component analysis (PCA), and multiple linear regression (MLRA). The content of the hot acid-extractable forms of the elements, PCA, and MLRA revealed a heavy geological influence on microelement content, especially on Ni, Cr, and Co, while an anthropogenic influence was observed for Cu, Zn, and Cd content. This mixed impact was primarily related to mines and their impact on As and Pb content. The pseudo-total concentrations of all the analyzed elements did not prove to be a danger in the catchment area, except for Cu in some samples, indicating point-source pollution, and Ni, whose pseudo-total content could be a limiting factor in agricultural production. For the Ef, the Ni content in 59% soil and 68% flood sediment samples is classified into influence classes. The similar pseudo-total contents of the elements studied in soil samples and flood sediment and their origin indicate that the long-term soil formation process is subject to periodic flooding in the Kolubara River Basin without any significant changes taking place. This implies that floods are not an endangering factor in terms of the contamination of soil by potentially toxic elements in the explored area
    corecore