44 research outputs found

    Dissecting and modeling photic and melanopsin effects to predict sleep disturbances induced by irregular light exposure in mice.

    Get PDF
    Artificial lighting, day-length changes, shift work, and transmeridian travel all lead to sleep-wake disturbances. The nychthemeral sleep-wake cycle (SWc) is known to be controlled by output from the central circadian clock in the suprachiasmatic nuclei (SCN), which is entrained to the light-dark cycle. Additionally, via intrinsically photosensitive retinal ganglion cells containing the photopigment melanopsin (Opn4), short-term light-dark alternations exert direct and acute influences on sleep and waking. However, the extent to which longer exposures typically experienced across the 24-h day exert such an effect has never been clarified or quantified, as disentangling sustained direct light effects (SDLE) from circadian effects is difficult. Recording sleep in mice lacking a circadian pacemaker, either through transgenesis (Syt10 <sup>cre/cre</sup> Bmal1 <sup>fl/-</sup> ) or SCN lesioning and/or melanopsin-based phototransduction (Opn4 <sup>-/-</sup> ), we uncovered, contrary to prevailing assumptions, that the contribution of SDLE is as important as circadian-driven input in determining SWc amplitude. Specifically, SDLE were primarily mediated (>80%) through melanopsin, of which half were then relayed through the SCN, revealing an ancillary purpose for this structure, independent of its clock function in organizing SWc. Based on these findings, we designed a model to estimate the effect of atypical light-dark cycles on SWc. This model predicted SWc amplitude in mice exposed to simulated transequatorial or transmeridian paradigms. Taken together, we demonstrate this SDLE is a crucial mechanism influencing behavior on par with the circadian system. In a broader context, these findings mandate considering SDLE, in addition to circadian drive, for coping with health consequences of atypical light exposure in our society

    Endothelial cells enhance the in vivo bone-forming ability of osteogenic cell sheets

    Get PDF
    Addressing the problem of vascularization is of vital importance when engineering three-dimensional (3D) tissues. Endothelial cells are increasingly used in tissue-engineered constructs to obtain prevascularization and to enhance in vivo neovascularization. Rat bone marrow stromal cells were cultured in thermoresponsive dishes under osteogenic conditions with human umbilical vein endothelial cells (HUVECs) to obtain homotypic or heterotypic cell sheets (CSs). Cells were retrieved as sheets from the dishes after incubation at 20 °C. Monoculture osteogenic CSs were stacked on top of homotypic or heterotypic CSs, and subcutaneously implanted in the dorsal flap of nude mice for 7 days. The implants showed mineralized tissue formation under both conditions. Transplanted osteogenic cells were found at the new tissue site, demonstrating CS bone-inductive effect. Perfused vessels, positive for human CD31, confirmed the contribution of HUVECs for the neovascularization of coculture CS constructs. Furthermore, calcium quantification and expression of osteocalcin and osterix genes were higher for the CS constructs, with HUVECs demonstrating the more robust osteogenic potential of these constructs. This work demonstrates the potential of using endothelial cells, combined with osteogenic CSs, to increase the in vivo vascularization of CS-based 3D constructs for bone tissue engineering purposes.We would like to acknowledge Mariana T Cerqueira for the illustration in Figure 1. This study was supported by Formation of Innovation Center for Fusion of Advanced Technologies in the Special Coordination Funds for Promoting Science and Technology 'Cell Sheet Tissue Engineering Center (CSTEC)' and the Global CUE program, the Multidisciplinary Education and Research Center for Regenerative Medicine (MERCREM), from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. Financial support to RP Pirraco by the Portuguese Foundation for Science and Technology (FCT) through the PhD Grant SFRH/BD/44893/2008 is also acknowledged

    Circadian Desynchrony Promotes Metabolic Disruption in a Mouse Model of Shiftwork

    Get PDF
    Shiftwork is associated with adverse metabolic pathophysiology, and the rising incidence of shiftwork in modern societies is thought to contribute to the worldwide increase in obesity and metabolic syndrome. The underlying mechanisms are largely unknown, but may involve direct physiological effects of nocturnal light exposure, or indirect consequences of perturbed endogenous circadian clocks. This study employs a two-week paradigm in mice to model the early molecular and physiological effects of shiftwork. Two weeks of timed sleep restriction has moderate effects on diurnal activity patterns, feeding behavior, and clock gene regulation in the circadian pacemaker of the suprachiasmatic nucleus. In contrast, microarray analyses reveal global disruption of diurnal liver transcriptome rhythms, enriched for pathways involved in glucose and lipid metabolism and correlating with first indications of altered metabolism. Although altered food timing itself is not sufficient to provoke these effects, stabilizing peripheral clocks by timed food access can restore molecular rhythms and metabolic function under sleep restriction conditions. This study suggests that peripheral circadian desynchrony marks an early event in the metabolic disruption associated with chronic shiftwork. Thus, strengthening the peripheral circadian system by minimizing food intake during night shifts may counteract the adverse physiological consequences frequently observed in human shift workers

    Bright light therapy in pregnant women with major depressive disorder: Study protocol for a randomized, double-blind, controlled clinical trial

    Get PDF
    Background: Depression during pregnancy is a common and high impact disease. Generally, 5-10 % of pregnant women suffer from depression. Children who have been exposed to maternal depression during pregnancy have a higher risk of adverse birth outcomes and more often show cognitive, emotional and behavioural problems. Therefore, early detection and treatment of antepartum depression is necessary. Both psychotherapy and antidepressant medication, first choice treatments in a non-pregnant population, have limitations in treating depression during pregnancy. Therefore, it is urgent and relevant to investigate alternative treatments for antepartum depression. Bright light therapy (BLT) is a promising treatment for pregnant women with depressive disorder, for it combines direct availability, sufficient efficacy, low costs and high safety, taking the safety for the unborn child into account as well. Methods: In this study, 150 pregnant women (12-18 weeks pregnant) with a DSM-V diagnosis of depressive disorder will be randomly allocated in a 1:1 ratio to one of the two treatment arms: treatment with BLT (9.000 lux) or treatment with dim red light therapy (100 lux). Both groups will be treated for 6 weeks at home on a daily basis for 30 min, within 30 min of habitual wake-up time. Follow-up will take place after 6 weeks of therapy, 3 and 10 weeks after end of therapy, at birth and 2, 6 and 18 months postpartum. Primary outcome will be the average change in depressive symptoms between the two groups, as measured by the Structured Interview Guide for the Hamilton Depression Scale - Seasonal Affective Disorder version and the Edinburg Postnatal Depression Scale. Changes in rating scale scores of these questionnaires over time will be analysed using generalized linear mixed models. Secondary outcomes will be the changes in maternal cortisol and melatonin levels, in maternal sleep quality and gestational age, birth weight, infant behaviour, infant cortisol exposure and infant cortisol stress response. Discussion: If BLT reduces depressive symptoms in pregnant women, it will provide a safe, cheap, non-pharmacological and efficacious alternative treatment for psychotherapy and antidepressant medication in treating antepartum depression, without any expected adverse reactions for the unborn child. Trial registration: Netherlands Trial Register NTR5476. Registered 5 November 2015

    Adrenal glucocorticoids as a target for jet lag therapies.

    No full text

    Zirkadiane Uhren in Gehirn und Peripherie: biologische Funktion und Relevanz fĂŒr die Klinik.

    No full text
    In den meisten Organismen - von Cyanobakterien bis zum Menschen - haben sich genetisch kodierte zirkadiane Uhren entwickelt, die Verhalten und Physiologie an im Tagesverlauf verĂ€nderliche Umweltbedingungen adaptieren. Störungen der Uhr, zum Beispiel durch Schichtarbeit, beeintrĂ€chtigen diese Anpassung und fördern so die Entwicklung von metabolischen, immunologischen und neuropsychiatrischen Erkrankungen. Das zirkadiane System der SĂ€ugetiere besteht aus einem zentralen Schrittmacher im Nucleus suprachiasmaticus des Hypothalamus und untergeordneten, semi-autonomen Uhren in, unter anderem, der Leber, der Niere, der Nebenniere, aber auch in vielen weiteren Hirnregionen. WĂ€hrend periphere Oszillatoren endokrine, metabolische und immunologische Prozesse regulieren, modulieren zentrale Uhren grundlegende wie höhere Hirnfunktionen. In Klinik und Praxis hilft die Kenntnis dieser physiologischen Rhythmen bei der Interpretation von Labordaten und anderen Krankheitssymptomen. Die Chronomedizin kann durch Anpassung der Behandlungszeiten die Wirksamkeit und Nebenwirkungen von Therapien optimieren oder ĂŒber eine Stabilisierung des internen zirkadianen Rhythmus den Krankheitsstatus direkt beeinflussen

    Synchronization of the mammalian circadian timing system: Light can control peripheral clocks independently of the SCN clock: Alternate routes of entrainment optimize the alignment of the body's circadian clock network with external time.

    No full text
    A network of cellular circadian clocks adapts physiology to the 24-hour day cycle. Traditionally clock entrainment has been conceptualized in a hierarchical scheme with a light-reset SCN pacemaker that subsequently aligns subordinate peripheral clocks. New experiments suggest that resetting of the circadian system occurs in a more “federated” fashion allowing for increased noise resistance and plasticity of circadian timekeeping under complex natural conditions
    corecore