11 research outputs found

    Studies on different concentration of lead (Pb) and sewage water on Pb uptake and growth of Radish (Raphanus sativus)

    No full text
    To investigate the accumulation of lead (Pb) by radish (Raphanus sativus) cultivars a study was carried out at Department of Soil and Environmental Sciences, Gomal University, Dera Ismail Khan (Pakistan), during 2012. Two radish varieties i.e., exotic and local, were used. The treatments included sewage water and different concentrations of Pb @ 25, 100, 200 and 400 mg L-1. The results showed that the total biomass of both the radish varieties were nonsignificantly influenced by the applied Pb concentrations and sewage water, except for root diameter which were significantly greater in the local cultivar (3.261 cm).Pb treatments significantly reduced the growth and yield of both the cultivars. While the Pb uptake by the root and leaf of radish plants was increased by the increasing the applied Pb levels, with the highest value for root (19.008 mg kg-1) and leaf (16.134 mg kg-1) in the treatment receiving the highest applied Pb concentrations. The total biomass, fresh weight of root and root diameter was found significantly higher except for Pb @ 400 mg L-1, in the plants receiving sewage water as compared to the control and different levels of Pb. The interaction amongst the varieties and treatments were found significantly different for various parameters. Thus, it can be concluded, that the use of sewage water and Pb contaminated wastewater results in higher metal concentration in the radish root and may lead to different types of health problems to consumers

    Biochemical and Metabolic Changes in Arsenic Contaminated Boehmeria nivea L.

    No full text
    Arsenic (As) is identified by the EPA as the third highest toxic inorganic contaminant. Almost every 9th or 10th human in more than 70 countries including mainland China is affected by As. Arsenic along with other toxins not only affects human life but also creates alarming situations such as the deterioration of farm lands and desertion of industrial/mining lands. Researchers and administrators have agreed to opt for phytoremediation of As over costly cleanups. Boehmeria nivea L. can soak up various heavy metals, such as Sb, Cd, Pb, and Zn. But the effect of As pollution on the biology and metabolism of B. nivea has been somewhat overlooked. This study attempts to evaluate the extent of As resistance, chlorophyll content, and metabolic changes in As-polluted (5, 10, 15, and 20 mg L−1 As) B. nivea in hydroponics. Toxic effects of As in the form of inhibited growth were apparent at the highest level of added As. The significant changes in the chlorophyll, electrolyte leakage, and H2O2, significant increases in As in plant parts, catalase (CAT), and malondialdehyde (MDA), with applied As revealed the potential of B. nivea for As decontamination. By employing the metabolic machinery of B. nivea, As was sustainably removed from the contaminated areas

    Regional climate assessment of precipitation and temperature in Southern Punjab (Pakistan) using SimCLIM climate model for different temporal scales

    No full text
    Unbalanced climate during the last decades has created spatially alarming and destructive situations in the world. Anomalies in temperature and precipitation enhance the risks for crop production in large agricultural region (especially the Southern Punjab) of Pakistan. Detailed analysis of historic weather data (1980–2011) record helped in creating baseline data to compare with model projection (SimCLIM) for regional level. Ensemble of 40 GCMs used for climatic projections with greenhouse gas (GHG) representative concentration pathways (RCP-4.5, 6.0, 8.5) was selected on the baseline comparison and used for 2025 and 2050 climate projection. Precipitation projected by ensemble and regional weather observatory at baseline showed highly unpredictable nature while both temperature extremes showed 95 % confidence level on a monthly projection. Percentage change in precipitation projected by model with RCP-4.5, RCP-6.0, and RCP-8.5 showed uncertainty 3.3 to 5.6 %, 2.9 to 5.2 %, and 3.6 to 7.9 % for 2025 and 2050, respectively. Percentage change of minimum temperature from base temperature showed that 5.1, 4.7, and 5.8 % for 2025 and 9.0, 8.1, and 12.0 % increase for projection year 2050 with RCP-4.5, 6.0, and 8.5 and maximum temperature 2.7, 2.5, and 3.0 % for 2025 and 4.7, 4.4, and 6.4 % for 2050 will be increased with RCP-4.5, 6.0, and 8.5, respectively. Uneven increase in precipitation and asymmetric increase in temperature extremes in future would also increase the risk associated with management of climatic uncertainties. Future climate projection will enable us for better risk management decisions
    corecore