2,737 research outputs found
Case Reports: Peritoneal hydatidosis in a young girl
We report a case of peritoneal hydatidosis that occurred post laparotomy. Patient was diagnosed nine months after she had laparotomy for suspected acute appendicitis. The whole peritoneal cavity was studded with cysts. In view of diffuse involvement, patient was managed conservatively and showed response to medical therapy
Human Tra2 proteins jointly control a CHEK1 splicing switch among alternative and constitutive target exons
Alternative splicing—the production of multiple messenger RNA isoforms from a single gene—is regulated in part by RNA binding proteins. While the RBPs transformer2 alpha (Tra2α) and Tra2β have both been implicated in the regulation of alternative splicing, their relative contributions to this process are not well understood. Here we find simultaneous—but not individual—depletion of Tra2α and Tra2β induces substantial shifts in splicing of endogenous Tra2β target exons, and that both constitutive and alternative target exons are under dual Tra2α–Tra2β control. Target exons are enriched in genes associated with chromosome biology including CHEK1, which encodes a key DNA damage response protein. Dual Tra2 protein depletion reduces expression of full-length CHK1 protein, results in the accumulation of the DNA damage marker γH2AX and decreased cell viability. We conclude Tra2 proteins jointly control constitutive and alternative splicing patterns via paralog compensation to control pathways essential to the maintenance of cell viability
A Robust Hybrid Neural Network Architecture for Blind Source Separation of Speech Signals Exploiting Deep Learning
In the contemporary era, blind source separation has emerged as a highly appealing and significant research topic within the field of signal processing. The imperative for the integration of blind source separation techniques within the context of beyond fifth-generation and sixth-generation networks arises from the increasing demand for reliable and efficient communication systems that can effectively handle the challenges posed by high-density networks, dynamic interference environments, and the coexistence of diverse signal sources, thereby enabling enhanced signal extraction and separation for improved system performance. Particularly, audio processing presents a critical domain where the challenge lies in effectively handling files containing a mixture of human speech, silence, and music. Addressing this challenge, speech separation systems can be regarded as a specialized form of human speech recognition or audio signal classification systems that are leveraged to separate, identify, or delineate segments of audio signals encompassing human speech. In various applications such as volume reduction, quality enhancement, detection, and identification, the need arises to separate human speech by eliminating silence, music, or environmental noise from the audio signals. Consequently, the development of robust methods for accurate and efficient speech separation holds paramount importance in optimizing audio signal processing tasks. This study proposes a novel three-way neural network architecture that incorporates transfer learning, a pre-trained dual-path recurrent neural network, and a transformer. In addition to learning the time series associated with audio signals, this network possesses the unique capability of direct context-awareness for modeling the speech sequence within the transformer framework. A comprehensive array of simulations is meticulously conducted to evaluate the performance of the proposed model, which is benchmarked with seven prominent state-of-the-art deep learning-based architectures. The results obtained from these evaluations demonstrate notable advancements in multiple objective metrics. Specifically, our proposed solution showcases an average improvement of 4.60% in terms of short-time objective intelligibility, 14.84% in source-to-distortion ratio, and 9.87% in scale-invariant signal-to-noise ratio. These extraordinary advancements surpass those achieved by the nearest rival, namely the dual-path recurrent neural network time-domain audio separation network, firmly establishing the superiority of our proposed model's performance
Research biopsies in kidney transplantation: an evaluation of surgical techniques and optimal tissue mass allowing molecular and histological analyses
Background: Research biopsies have great potential to advance scientific knowledge by helping to establish predictors of favourable or unfavourable outcomes in kidney transplantation. We evaluated punch and core biopsies of different sizes to determine the optimal size for clinical use. Methods: A total of 54 punch biopsies and 18 core needle biopsies were retrieved by three transplant surgeons. Each surgeon obtained three separate 2 mm, 3 mm and 4 mm punch biopsy samples and three 23 mm (length) core needle biopsies from two pig kidneys. Results: 4 mm punch biopsies yielded the greatest amount of protein (2.11 ± 0.41 mg) with good reproducibility between surgeons and biopsy types (Coefficient of Variation ∼ 22.13%). All surgeons found 2 mm biopsies technically challenging to obtain and sample processing was difficult due to the sample size. Shotgun proteomics identified 3853 gene products with no significant difference in the quantitative proteome of 2 mm and 3 mm punch biopsies. However, the expression of 158 Kidney enriched genes, was higher in bigger and deeper 4 mm punch and core needle biopsies compared to 2 mm biopsy. Only 80% of 2 mm biopsies demonstrated the presence of glomeruli, whereas glomeruli were present in 100% of all other biopsy sizes. Conclusions: The 2 mm punch biopsy has been shown to be challenging to use and frequently provides inadequate tissue for histology and proteomics while 3 mm research biopsies were the smallest size that were technically obtainable with adequate tissue for molecular studies
Recommended from our members
Prevalence and indicators of vitamin B12 insufficiency among young women of childbearing age
Vitamin B12 insufficiency is a global health issue among women of childbearing age, yet few studies have investigated its prevalence and risk factors among healthy Middle Eastern populations. This cross-sectional study included 346 Saudi women aged 19–30 years and enrolled at King Saud University, Riyadh, Saudi Arabia. A series of questionnaires were administered to record the study participants’ sociodemographic status, medical history, dietary intake, and physical activity. Participants’ anthropometric data were also recorded and their fasting blood samples were analyzed. The rate of vitamin B12 insufficiency (≤220 pmol/L) was approximately 6% among the study participants. After adjusting for confounding factors, it was observed that the risk factors for vitamin B12 insufficiency included daily sitting time ≥ 7 h, low income (2.4 mcg/day) has been shown to confer reasonable protection against vitamin B12 insufficiency. These study findings highlight that a combination of increased physical activity and dietary vitamin B12 intake above the current recommended dietary allowance may help improve the serum vitamin B12 levels of young women of childbearing age, especially those with a low socioeconomic status. Timely detection and protection against vitamin B12 insufficiency in this subpopulation are important to prevent maternal and fetal health risks
Acquisition of pneumococci specific effector and regulatory Cd4+ T cells localising within human upper respiratory-tract mucosal lymphoid tissue
The upper respiratory tract mucosa is the location for commensal Streptococcus (S.) pneumoniae colonization and therefore represents a major site of contact between host and bacteria. The CD4(+) T cell response to pneumococcus is increasingly recognised as an important mediator of immunity that protects against invasive disease, with data suggesting a critical role for Th17 cells in mucosal clearance. By assessing CD4 T cell proliferative responses we demonstrate age-related sequestration of Th1 and Th17 CD4(+) T cells reactive to pneumococcal protein antigens within mucosal lymphoid tissue. CD25(hi) T cell depletion and utilisation of pneumococcal specific MHCII tetramers revealed the presence of antigen specific Tregs that utilised CTLA-4 and PDL-1 surface molecules to suppress these responses. The balance between mucosal effector and regulatory CD4(+) T cell immunity is likely to be critical to pneumococcal commensalism and the prevention of unwanted pathology associated with carriage. However, if dysregulated, such responses may render the host more susceptible to invasive pneumococcal infection and adversely affect the successful implementation of both polysaccharide-conjugate and novel protein-based pneumococcal vaccines
Innate and adaptive autoimmunity in type 1 diabetes
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74867/1/j.1399-5448.2007.00334.x.pd
Envelope Determinants of Equine Lentiviral Vaccine Protection
Lentiviral envelope (Env) antigenic variation and associated immune evasion present major obstacles to vaccine development. The concept that Env is a critical determinant for vaccine efficacy is well accepted, however defined correlates of protection associated with Env variation have yet to be determined. We reported an attenuated equine infectious anemia virus (EIAV) vaccine study that directly examined the effect of lentiviral Env sequence variation on vaccine efficacy. The study identified a significant, inverse, linear correlation between vaccine efficacy and increasing divergence of the challenge virus Env gp90 protein compared to the vaccine virus gp90. The report demonstrated approximately 100% protection of immunized ponies from disease after challenge by virus with a homologous gp90 (EV0), and roughly 40% protection against challenge by virus (EV13) with a gp90 13% divergent from the vaccine strain. In the current study we examine whether the protection observed when challenging with the EV0 strain could be conferred to animals via chimeric challenge viruses between the EV0 and EV13 strains, allowing for mapping of protection to specific Env sequences. Viruses containing the EV13 proviral backbone and selected domains of the EV0 gp90 were constructed and in vitro and in vivo infectivity examined. Vaccine efficacy studies indicated that homology between the vaccine strain gp90 and the N-terminus of the challenge strain gp90 was capable of inducing immunity that resulted in significantly lower levels of post-challenge virus and significantly delayed the onset of disease. However, a homologous N-terminal region alone inserted in the EV13 backbone could not impart the 100% protection observed with the EV0 strain. Data presented here denote the complicated and potentially contradictory relationship between in vitro virulence and in vivo pathogenicity. The study highlights the importance of structural conformation for immunogens and emphasizes the need for antibody binding, not neutralizing, assays that correlate with vaccine protection. © 2013 Craigo et al
Genomic Runs of Homozygosity Record Population History and Consanguinity
The human genome is characterised by many runs of homozygous genotypes, where identical haplotypes were inherited from each parent. The length of each run is determined partly by the number of generations since the common ancestor: offspring of cousin marriages have long runs of homozygosity (ROH), while the numerous shorter tracts relate to shared ancestry tens and hundreds of generations ago. Human populations have experienced a wide range of demographic histories and hold diverse cultural attitudes to consanguinity. In a global population dataset, genome-wide analysis of long and shorter ROH allows categorisation of the mainly indigenous populations sampled here into four major groups in which the majority of the population are inferred to have: (a) recent parental relatedness (south and west Asians); (b) shared parental ancestry arising hundreds to thousands of years ago through long term isolation and restricted effective population size (N(e)), but little recent inbreeding (Oceanians); (c) both ancient and recent parental relatedness (Native Americans); and (d) only the background level of shared ancestry relating to continental N(e) (predominantly urban Europeans and East Asians; lowest of all in sub-Saharan African agriculturalists), and the occasional cryptically inbred individual. Moreover, individuals can be positioned along axes representing this demographic historic space. Long runs of homozygosity are therefore a globally widespread and under-appreciated characteristic of our genomes, which record past consanguinity and population isolation and provide a distinctive record of the demographic history of an individual's ancestors. Individual ROH measures will also allow quantification of the disease risk arising from polygenic recessive effects
Stem cell function and stress response are controlled by protein synthesis.
Whether protein synthesis and cellular stress response pathways interact to control stem cell function is currently unknown. Here we show that mouse skin stem cells synthesize less protein than their immediate progenitors in vivo, even when forced to proliferate. Our analyses reveal that activation of stress response pathways drives both a global reduction of protein synthesis and altered translational programmes that together promote stem cell functions and tumorigenesis. Mechanistically, we show that inhibition of post-transcriptional cytosine-5 methylation locks tumour-initiating cells in this distinct translational inhibition programme. Paradoxically, this inhibition renders stem cells hypersensitive to cytotoxic stress, as tumour regeneration after treatment with 5-fluorouracil is blocked. Thus, stem cells must revoke translation inhibition pathways to regenerate a tissue or tumour.This work was funded by Cancer Research UK (CR-UK), Worldwide Cancer Research, the Medical Research Council (MRC), the European Research Council (ERC), and EMBO. Research in Michaela Frye's laboratory is supported by a core support grant from the Wellcome Trust and MRC to the Wellcome Trust-Medical Research Cambridge Stem Cell Institute.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nature1828
- …