229 research outputs found

    Capacity management of nursing staff as a vehicle for organizational improvement

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Capacity management systems create insight into required resources like staff and equipment. For inpatient hospital care, capacity management requires information on beds and nursing staff capacity, on a daily as well as annual basis. This paper presents a comprehensive capacity model that gives insight into required nursing staff capacity and opportunities to improve capacity utilization on a ward level.</p> <p>Methods</p> <p>A capacity model was developed to calculate required nursing staff capacity. The model used historical bed utilization, nurse-patient ratios, and parameters concerning contract hours to calculate beds and nursing staff needed per shift and the number of nurses needed on an annual basis in a ward. The model was applied to three different capacity management problems on three separate groups of hospital wards. The problems entailed operational, tactical, and strategic management issues: optimizing working processes on pediatric wards, predicting the consequences of reducing length of stay on nursing staff required on a cardiology ward, and calculating the nursing staff consequences of merging two internal medicine wards.</p> <p>Results</p> <p>It was possible to build a model based on easily available data that calculate the nursing staff capacity needed daily and annually and that accommodate organizational improvements. Organizational improvement processes were initiated in three different groups of wards. For two pediatric wards, the most important improvements were found to be improving working processes so that the agreed nurse-patient ratios could be attained. In the second case, for a cardiology ward, what-if analyses with the model showed that workload could be substantially lowered by reducing length of stay. The third case demonstrated the possible savings in capacity that could be achieved by merging two small internal medicine wards.</p> <p>Conclusion</p> <p>A comprehensive capacity model was developed and successfully applied to support capacity decisions on operational, tactical, and strategic levels. It appeared to be a useful tool for supporting discussions between wards and hospital management by giving objective and quantitative insight into staff and bed requirements. Moreover, the model was applied to initiate organizational improvements, which resulted in more efficient capacity utilization.</p

    A large scale survey reveals that chromosomal copy-number alterations significantly affect gene modules involved in cancer initiation and progression

    Get PDF
    Background Recent observations point towards the existence of a large number of neighborhoods composed of functionally-related gene modules that lie together in the genome. This local component in the distribution of the functionality across chromosomes is probably affecting the own chromosomal architecture by limiting the possibilities in which genes can be arranged and distributed across the genome. As a direct consequence of this fact it is therefore presumable that diseases such as cancer, harboring DNA copy number alterations (CNAs), will have a symptomatology strongly dependent on modules of functionally-related genes rather than on a unique "important" gene. Methods We carried out a systematic analysis of more than 140,000 observations of CNAs in cancers and searched by enrichments in gene functional modules associated to high frequencies of loss or gains. Results The analysis of CNAs in cancers clearly demonstrates the existence of a significant pattern of loss of gene modules functionally related to cancer initiation and progression along with the amplification of modules of genes related to unspecific defense against xenobiotics (probably chemotherapeutical agents). With the extension of this analysis to an Array-CGH dataset (glioblastomas) from The Cancer Genome Atlas we demonstrate the validity of this approach to investigate the functional impact of CNAs. Conclusions The presented results indicate promising clinical and therapeutic implications. Our findings also directly point out to the necessity of adopting a function-centric, rather a gene-centric, view in the understanding of phenotypes or diseases harboring CNAs.Spanish Ministry of Science and Innovation (grant BIO2008-04212)Spanish Ministry of Science and Innovation (grant FIS PI 08/0440)GVA-FEDER (PROMETEO/2010/001)Red Temática de Investigación Cooperativa en Cáncer (RTICC) (grant RD06/0020/1019)Instituto de Salud Carlos III (ISCIII)Spanish Ministry of Science and InnovationSpanish Ministry of Health (FI06/00027

    Nursing workload and patient safety - a mixed method study with an ecological restorative approach

    Get PDF
    OBJECTIVE: The aim of this study was to analyze the potential association between nursing workload and patient safety in the medical and surgical inpatient units of a teaching hospital. METHOD: a mixed method strategy (sequential explanatory design). RESULTS: the initial quantitative stage of the study suggest that increases in the number of patients assigned to each nursing team lead to increased rates of bed-related falls, central line-associated bloodstream infections, nursing staff turnover, and absenteeism. During the subsequent qualitative stage of the research, the nursing team stressed medication administration, bed baths, and patient transport as the aspects of care that have the greatest impact on workload and pose the greatest hazards to patient, provider, and environment safety. CONCLUSIONS: The findings demonstrated significant associations between nursing workload and patient safety. We observed that nursing staff with fewer patients presented best results of care-related and management-related patient safety indicators. In addition, the tenets of ecological and restorative thinking contributed to the understanding of some of the aspects in this intricate relationship from the standpoint of nursing providers. They also promoted a participatory approach in this study

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    An integrated approach to the interpretation of Single Amino Acid Polymorphisms within the framework of CATH and Gene3D

    Get PDF
    Background The phenotypic effects of sequence variations in protein-coding regions come about primarily via their effects on the resulting structures, for example by disrupting active sites or affecting structural stability. In order better to understand the mechanisms behind known mutant phenotypes, and predict the effects of novel variations, biologists need tools to gauge the impacts of DNA mutations in terms of their structural manifestation. Although many mutations occur within domains whose structure has been solved, many more occur within genes whose protein products have not been structurally characterized.&lt;p&gt;&lt;/p&gt; Results Here we present 3DSim (3D Structural Implication of Mutations), a database and web application facilitating the localization and visualization of single amino acid polymorphisms (SAAPs) mapped to protein structures even where the structure of the protein of interest is unknown. The server displays information on 6514 point mutations, 4865 of them known to be associated with disease. These polymorphisms are drawn from SAAPdb, which aggregates data from various sources including dbSNP and several pathogenic mutation databases. While the SAAPdb interface displays mutations on known structures, 3DSim projects mutations onto known sequence domains in Gene3D. This resource contains sequences annotated with domains predicted to belong to structural families in the CATH database. Mappings between domain sequences in Gene3D and known structures in CATH are obtained using a MUSCLE alignment. 1210 three-dimensional structures corresponding to CATH structural domains are currently included in 3DSim; these domains are distributed across 396 CATH superfamilies, and provide a comprehensive overview of the distribution of mutations in structural space.&lt;p&gt;&lt;/p&gt; Conclusion The server is publicly available at http://3DSim.bioinfo.cnio.es/ webcite. In addition, the database containing the mapping between SAAPdb, Gene3D and CATH is available on request and most of the functionality is available through programmatic web service access.&lt;p&gt;&lt;/p&gt

    Transfer of molecular recognition information from DNA nanostructures to gold nanoparticles

    Get PDF
    DNA nanotechnology offers unparalleled precision and programmability for the bottom-up organization of materials. This approach relies on pre-assembling a DNA scaffold, typically containing hundreds of different strands, and using it to position functional components. A particularly attractive strategy is to employ DNA nanostructures not as permanent scaffolds, but as transient, reusable templates to transfer essential information to other materials. To our knowledge, this approach, akin to top-down lithography, has not been examined. Here we report a molecular printing strategy that chemically transfers a discrete pattern of DNA strands from a three-dimensional DNA structure to a gold nanoparticle. We show that the particles inherit the DNA sequence configuration encoded in the parent template with high fidelity. This provides control over the number of DNA strands and their relative placement, directionality and sequence asymmetry. Importantly, the nanoparticles produced exhibit the site-specific addressability of DNA nanostructures, and are promising components for energy, information and biomedical applications
    corecore